
1

Upgrading OpenACS 5.4 to 5.10
A case study at the City of Milan

EuroTcl 2023 – Vienna University for Economics and Business

Antonio Pisano

2

Introduction

● OpenACS in the context of an important public administration

● Successfully upgrading a long running, productive, OpenACS application

● Costs

● Challenges

● Lessons learned

What this presentation is about

3

OSAPI

● Web-based ERP for Public Ground Occupation.

● Created to manage the entire process of issuing authorizations related to the use of
public land (an unavailable asset) under the various offices of the City of Milan.

● In use since 2012, owned by the City of Milan and maintained by PHI Software S.r.l.

● From the beginning looks at public administration as a collaborating community on
a single shared database containing spatial, accounting, control and resource
optimization information.

● As a shared, community-based application, it makes it easy to implement services
to the citizen, monitor transparency and efficiency of administrative processes and
implement data views and tools for planning and policing.

What is OSAPI

4

OSAPI

● The main use-case is citizens or companies requesting a permit to occupy a portion
of the public city ground. The request is processed and, in case of approval,
normally involves the payment of one or more State or local taxes.

● There are 149 different types of permits and 100 tax calculation formulas.

● Permits, dossiers and other application artifacts are implemented using a in-house
workflow system. Multiple groups of users with different levels of privilege interact
with the system according to the workflow specification.

● Groups of users span across different offices in the city administration, responsible
for different types of authorization, the local police department and the public.

● Typical examples of permits are those for construction sites, driveways, weekly
markets or restaurant tables located on the sidewalk.

What OSAPI does

5

Traceability of processes to derive
indicators of the efficiency and
effectiveness of the workflows in
place and the work done.

Schedules showing lists of
proceedings that have exceeded the
acceptable processing time

Productivity studied by territory, by
office, by user, by type of permit.

Profitability by permit type, by year
period, by event classes, by territorial
centers.

OSAPI

Main goals

6

OSAPI IN NUMBERS

Permits and revenues

Filed applications 75.500
Granted permits 70.000
Pending permits 1.500
Denied or archived permits 1.000
Other inactive permit applications 3.000

Tax revenue from open-ended permits € 34.000.000
Tax revenue from short-term permits € 33.000.000

7

OSAPI IN NUMBERS

Permits and revenues

Short-term permits revenue forecast 2023
Public Events € 1.251.804,45
Driveways € 24.597,84
Scaffoldings € 20.150.581,59
Local Police € 7.227.778,25
Escavation works € 4.866.227,27

 € 33.520.989,39

8

OSAPI IN NUMBERS

Application size

OSAPI

.tcl source files 1.318

Procs 438

.adp source files 766

.xml source files * 303

Printouts 269

DB Tables ~ 450

DB Dump Size 25GB

ACS Objects 1.5 M

* workflow states (every file is basically to a program)
OPEN ACS

.tcl source files 5.080

Procs 3.331

DB Tables 906

9

OSAPI IN NUMBERS

OpenACS upstream packages

● acs-core

● categories

● file-storage

● rss-support

● oacs-dav

● attachments

● schema-browser

● monitoring

● acs-mail

10

OSAPI IN NUMBERS

OpenACS downstream packages

● maps: map support

● submit: workflow system

● tosap: main application logics

● z-customization: here are the customizations to upstream api

11

OSAPI IN NUMBERS

Users, groups and collaboration

COOPERATION

Cooperating Offices 115

Active Users 631

Yearly office interactions 30.456

Average daily office interactions 138

12

The Upgrade

● In 2022 the City of Milan renewed its commitment to OSAPI.

● This came with the decision to upgrade the complete application stack, including:

● Underlying OpenACS version

● Postgres DBMS

● Operative system

● I am contracted by PHI Software S.r.l. to povide support to the project.

Future-proofing OSAPI

13

The Upgrade

● Application stack versions

● Operative system: Ubuntu 8.04 LTS

● DBMS: Postgres 8.2

● Web Server: AOLserver 4.5.1

● OpenACS: 5.4.3

● Development process

● Version control system: cvs for in-house codebase only

● Upstream codebase practically immutable

Starting point

14

The Upgrade

● Application stack versions

● Operative system: Ubuntu 20.04 LTS

● DBMS: Postgres 12 (OS packaged version)

● Web Server: NaviServer (latest release)

● OpenACS: 5.10.0

● Development process

● Version control system: git for in-house and upstream codebase.

● Allow for continuous update

Main goals

15

The Upgrade

● Spring 2022: upgrade plan

● Size the new machine

● Install the new stack

● Import database, codebase and settings

● Setup git repositories

● Connect upstream packages with upstream mirrors

● Summer 2022: test upgrade

● Perform the upgrade in a test environment

● Test the resulting system and validate the upgrade

Roadmap

16

The Upgrade

● Winter 2022/2023: upgrade rollout

● Agree on a suitable maintenance window: 2023-01-28 → 2023-01-29

● Import latest database and code changes

● Perform the upgrade

● Validate the upgrade

● Switch the production environment to the upgraded system: 2023-01-30

● Post-upgrade support

Roadmap

17

The Upgrade

● Upstream packages have been replaced with upstream versions

● Added GitHub mirror as a remote for the package

● Checked out closest upstream “relative” oacs-5-4

● The subsequent release branches have been checked out at every upgrade step

● Packages without release branches (e.g. schema-browser) were checked out and
updated just once

● Downstream code has been made part of the main acs-core repository

● The resulting setup has 3 main branches: development, production and upstream.
This allows to implement a release cycle concept and receive upstream code
regularly.

● The main server configuration files are also tracked via git in the core repository

Repository structure

18

The Upgrade

● The starting database had to be ported to Postgres 8.4 first

● Installed Postgres 8.4 from source and restored the original dump

● Upgraded stepwise 5.4 → 5.5 → 5.6 → 5.7 → 5.8

● Issues encountered:

● packages/acs-admin/www/install/index.tcl → had to comment the code trying to
connect to cvs, as it was not accessible by the machine

● acs-subsite/sql/postgresql/upgrade/upgrade-5.8.1-5.8.2.sql → the constraint that
is eliminated here can be named differently on an old database

The OpenACS upgrade – 1st Step

19

The Upgrade

● The upgraded database was dumped from Postgres 8.4 and restored in Postgres 12

● Upgraded stepwise 5.9 → 5.10

● Issues encountered:

● acs-kernel/sql/postgresql/upgrade/upgrade-5.10.1d8-5.10.1d9.sql → Again a
dropped constraint was named differently

● acs-tcl/tcl/apm-procs.tcl and acs-tcl/tcl/apm-install-procs.tcl → code was
expecting a cache to exist that was not there yet (fixed upstream)

The OpenACS upgrade – 2nd Step

20

The Upgrade

● Command lines used via exec

● trml2pdf: not packaged on Ubuntu anymore. Replaced from current GitHub repo.
Current version behaves slightly different (e.g. page orientation).

● Some utilities were overlooked and had to be re-instated.

● Postgres

● Postgres 8.4 removed many implicit type casts. Multiple queries in in-house
codebase had to be adapted.

● OpenACS

● The “inform” ad_form widgets do not pass their values on form submit. Many
pages had to be reworked.

● Logics to compute the system URL are much stricter in later versions.

Pitfalls, regressions, fallouts

21

The Upgrade

● OpenACS

● Deprecated api, e.g. “with_catch” vs “try” had to be replaced in many files to
keep warnings under control.

● Some local changes to upstream code had to be reinstated.

● Various specific configurations and setups had to be ported.

● JQuery UI

● Datepicker regression on Internet Explorer (still used in may offices). Solved by
updating the widget assets.

Other issues

22

The Upgrade

● Upgrade process

● PHI Software - hardware requirements analysis tests and coordinations with the
City Administration, backup and restore of data and sources, configurations and
validation: 96 person hours

● Me – upgrade design, development workflow design, git setup, backup and
restore of data and sources, upgrade rollout: 64 person hours

● Tests and Post-upgrade support

● PHI Software – tests, user-support, bugfixing, post-upgrade coordination with the
City Administration: 328 person hours

● Me – port-rollout fixes, git training, git setup tuning: 20 person hours

● Tackling all regressions post-upgrade took roughly 2 months

The costs of upgrading

23

Takeaways

● Testing testing testing!

● Testing and post-upgrade support was by far the costliest part of the project

● Having a good automated test suite is also costly, but worth the effort, at least for
core functionalities.

● Upgrading OpenACS installation was the easy part (at least for OSAPI)

● Upgrading regularly is better

● Code is kept up to date (deprecated api, best-practices...)

● Regressions can be absorbed gradually

● Ensures best features and security

● Git repays a rather steep learning curve with much more control over the codebase

What we learned along the way

24

Acknowledgments

● Many thanks to “Comune di Milano”, in particular to Laura Giuseppina Colombo, for
investing in this project and in the future of OSAPI in Milan. She also provided many
information and figures used in this presentation. Thanks also to Ubaldo Salerini for
his usual kindness and patience.

● Thanks to PHI Software, Stefano, Luca and Serena for involving me in this project
and for much heavylifting endured during these many months. Thanks also for
being here with us to tell you about it!

● Finally, many thanks to Hector Romojaro, whose work I have sometimes
“borrowed”, in particular the git setup, largely inspired by the one in use at LEARN.

25

Thanks for watching!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

