
Stephan Effelsberg, EuroTcl 2023, Vienna

Quickly creating a framework for
communicating to an embedded gas sensor

… or …

How I develop

1

About the inception of this talk

• Manfred Rosenberger saw that I used the ukaž graph widget and suggested a
lightning talk.

• It’s not my widget and I only use a small part of its capabilities.

• I’d better show the widget in the context of my application.

• Note: The code in here is not self-contained. These slides are supposed to be
accompanied by live demonstrations.

Thanks to Manfred Rosenberger for pushing me to give a talk.
2

About me

3

Name Stephan Effelsberg

Employer GfG mbH, Dortmund, gas detection specialist

Job description Programming mobile gas detectors in Embedded C

Also

Tcl/Tk

 has surpassed

C++/FLTK

 more and more for programming supporting tools

(My choice. The user facing code is done in C#.)

About me

We’re not an open source company. However, what I’m going to show is a
general (albeit my specific) idea to solve the problem at hand.

It just happens that the device at the other end of the communication line is a
real industrial sensor device.

4

The main act

I’m tasked with programming an Arm-based processor 
to control a gas sensor an offer a Modbus communication 
interface.

This sensor cartrdige is supposed to be plugged into a 
larger device.

5

Modbus via 
M12 connector

Gas sensor
STM32

The supporting act

The sensor cartridge offers a Modbus server (taken from an existing project).

I never interfaced with a Modbus device before, so I want to check that I can
talk to it as quickly as possible, where quickly means about one day of work.
There are quite generic tools like Modbus Poll but I want something that is
specialized for the job at hand. The application to be developed is a developer’s
tool, not a user facing tool.

6

Doing things quickly

• Use a binary distribution. Yes, I’m a programmer, but I don’t fell like building
everything from source.

• With batteries included, even if only a few are used: tcllib, ukaž, BWidget, …

• Some of my own favorite code

• And of course a lot of experience

Thanks to Ashok P. Nadkarni for MagicSplat (and too many people for Tcl itself)
7

Mac interlude
This talk is going to be presented on a MacBook, so let’s quickly check if I can
talk to a Modbus server. I’m using an off-the-shelf USB-to-RS485 adapter from
Digitus. I also learned how to read register 0 from Modbus slave 1 and used this
fixed byte sequence.

Thanks, Apple, but no …
8

set f [open /dev/cu.usbserial-AI02DYGR RDWR] 
fconfigure $f -blocking 0 -buffering none \ 
 -mode 19200,e,8,1 -translation binary 
puts -nonewline $f \x01\x04\x00\x00\x00\x01\x31\xca 
after 500 
set bin [read $f] 
binary scan $bin cu* data ; puts $data 
The exact answer depends on the contents of the register 
but is somehow recognizable.

It’s working. With stock Tcl 8.5.9!

Mac interlude
There’s no easily discoverable binary distribution for Apple Silicon Macs. (Or is
there? Sorry, Alex, I know by chance that you have a precompiled version.)

BAWT to the rescue. A single small download, some simple commands, and
about 20 minutes later …

Thanks to Paul Obermeier (and Alexander Schöpe)
9

% set tcl_patchLevel 
8.6.13

A GUI skeleton
As a developer I like to type commands but I also like to click a button. I know
already that I’ll partition the functionality of the sensor, so there’s a notebook for
the subsystems, a text widget for the main output and one for telegram logs.
Plus a toolbar and a statusbar.

If a notbook has many pages, I like it to be controlled by a listbox. The
contenders are: 
 - My own listbook (~ 150 lines) 
 - plainnotebook from scrollutils 
 - the Notebook from BWidget

The advantage of plainnotebook is that it’s API is compatible to the API of
ttk::notebook.

Thanks to Csaba Nemethi and Harald Oehlmann
10

A GUI skeleton

11

toolbar

notebook 
listbox notebook pages

statusbar

text

output log

A GUI skeleton
One API of the GUI is the global gui array. It’s used to configure parts of the GUI that
is to be created as well as to hold catchy names of the widget I want to use later on.

12

% parray gui 
gui(console) = tkcon 
gui(fcomm) = .f1 
gui(llcomframe) = .f1.comframeModbus.llcomframe 
gui(msgline) = .stbar 
gui(nb) = .f2.nb 
gui(notebookcommand) = listbook 
gui(output) = .nbout.f_output.output 
gui(raw_log) = .nbout.f_raw_log.raw_log 
gui(statusbar) = .stbar 
gui(use_bwidget) = true

A simple plug-in system
The notebook at the left is going to be filled with numerous subsystems, so it’s a
good idea to create a simple API for that. It’s used like this:

13

sub add "Hello" CreateHelloFrame 
 
proc CreateHelloFrame {w} { 
 set f [frame $w] 
 set b [button $f.b -text "Hello" -command { 
 Puts "Hello" 
 }] 
 pack $b 
 return $w 
}

Demo
The GUI so far. Further work will go into doing some real work.

14

Enhancing the developer’s experience
The application offers a (menu) command that reloads and rebuilds all
submodules. This means that I can work on the submodules while the GUI is
running and continually improve the functionality with a somewhat tight
feedback loop.

Let’s add a button to the Hello submodule.

15

Demo
The GUI was not restarted, the submodules were destroyed and rebuilt.

16

Reading the Modbus spec

17

Reading the Modbus spec
About the timing: The Modbus server in the cartridge meticulously implements
the correct timing. However, you don’t need dedicated hardware for the PC to
use the Modbus except for the purpose to check this very speciifc part.

Sending a telegram: The PC is capable of sending serial data without gaps
between the bytes.

Receiving a telegram: What you need to know is that the PC gives you a data
packet every 16 ms, so this dominates the character timeout. A value of 20 ms
has so far proved to be good on Windows and macOS.

18

Constructing telegrams
On the most basic level, the telegram contains the slave is, the function code,
the funtion-specific data and a CRC that can be generated by the tcllib module.

19

proc assembleTelegram {slave func bindata} { 
 set tg [binary format cucua* $slave $func $bindata] 
 set crc [crc::crc16 -seed 0xFFFF $tg] 
 append tg [binary format su $crc] 
 return $tg 
} 
 
 
 
 

Constructing a special telegram
E.g. if you want to read multiple registers, the Modbus spec translates to this.
Take care to use big endian encoding of the data words. Also, it’s quite OK to
use the binary command immediately for such a task. I leave receiveTelegram
open as homework.

20

proc readRegisters {slave address count} { 
 set bindata [binary format SuSu $address $count] 
 set func 4 
 set tg [assembleTelegram $slave $func $bindata] 
 send $tg 
 return [receiveTelegram] 
} 

Some functionality
Time to fill in some functionality. llcomfield is a snit::widget (ll = low level), llcom
and modbusproto are snit::types. modbusproto is now the container for the
previously introduced functions.

Thanks to Will Duquette for snit, hook and Vikings at Dino’s
21

Tcl channel

llcomllcomfield

modbusproto

telegrams

hook <Changed>

knows

peer

Demo
Playing with the communication facilities in a console.

22

Simple C-Structure parsing
The C code of the device contains numerous structs to describe the data that can be
exchanged. 
Example:

23

typedef struct { 
 uint8_t sidx; 
 uint8_t status; 
 uint8_t result; 
 uint8_t testmode; 
 uint32_t timestamp; 
 uint16_t pulse_duration_ms; 
 uint16_t sample_period_ms; 
 uint16_t sample_count; 
 int16_t samples_mV[100]; // sample_count, max. 100 
} SentestRsp;

Simple C-Structure parsing
I’d like to have these structs in the Tcl code as well, because the binary
command can get a bit clumsy for such structure sizes. Havinfg the same
syntax also helps checking that they are in sync.

I already had a Tcl module, I’d like to challenge my code sometimes, however.
It’s a bit like playing chess. The openings are usually the same but the moves
diverge quickly.

Let me replay my thoughts I had back then.

24

Simple C-Structure parsing
A struct looks very much like a type-identifier list. Let’s construct a binary scan
command from it. For the intended purpose I don’t like the identifiers to be
available immediately but rather nicely packed into an array of identifiers.

25

typedef struct { 
 int16_t x; 
 int16_t y; 
} Point; 
 
-> binary scan $bindata ss x y 
 
or rather 
 
-> binary scan $bindata ss idarray(x) idarray(y)

Simple C-Structure parsing
Type look-up uses an array, int16_t is supported.

26

namespace eval scstruct { 
 variable binformat_from_ctype 
 array set binformat_from_ctype { 
 int16_t s 
 } 
} 
 
proc scstruct::fromBinary {decllist bindata} { 
 variable binformat_from_ctype 
 set formatstring "" 
 set idarraylist [list] 
 foreach {ctype id} $decllist { 
 append formatstring $binformat_from_ctype($ctype) 
 lappend idarraylist idarray($id) 
 } 
 binary scan $bindata $formatstring {*}$idarraylist 
 return [array get idarray] 
}

Simple C-Structure parsing
Example usage

27

set decllist { 
 int16_t x 
 int16_t y 
} 
 
scstruct::fromBinary $decllist \x01\x00\x02\x00 
-> x 1 y 2

Simple C-Structure parsing
Don’t construct the whole format string for a single binary command, use binary
immediately for each identifier. This also helps checking for enough data.

28

proc scstruct::fromBinary {decllist bindata} { 
 variable binformat_from_ctype 
 foreach {ctype id} $decllist { 
 set fmtstr $binformat_from_ctype($ctype)$len 
 if {[binary scan $bindata ${fmtstr}a* idarray($id) rest] == 0} { 
 error "Fewer bytes than expected" 
 } 
 set bindata $rest 
 } 
 return [array get idarray] 
} 
 
 

Simple C-Structure parsing
Freeing the mind from the fact that the struct’s contents look like a list, parse as lines
instead. The regexp also immediately supports the semicolon after the identifier. In
fact, it supports many things. However, this is not supposed to be a syntax checker.

29

proc scstruct::fromBinary {decllist bindata} { 
 variable binformat_from_ctype 
 foreach decl [split $decllist \n] { 
 if {[string is space $decl]} { 
 # empty line 
 } elseif {[regexp -expanded { 
 (\w+) (?# type) 
 \s+ 
 (\w+) (?# identifier) 
 } $decl -> ctype id]} { 
 set fmtstr $binformat_from_ctype($ctype) 
 if {[binary scan $bindata ${fmtstr}a* idarray($id) rest] == 0} { 
 error "Fewer bytes than expected" 
 } 
 set bindata $rest 
 } else { 
 error "Unknown declaration: $decl" 
 } 
 } 
 return [array get idarray] 
}

Simple C-Structure parsing
Accept either a decllist immediately or the name of typedef’d struct. Add a
struct repository for this case.

30

namespace eval scstruct { 
 variable internal_from_typename 
 array set internal_from_typename {} 
} 
proc scstruct::fromBinary {decllist bindata} { 
 variable internal_from_typename 
 if {[llength $decllist_or_typename] == 1} { 
 return $internal_from_typename($decllist_or_typename) 
 } else { 
 return [ToInternal $decllist_or_typename] 
 } 
 variable binformat_from_ctype 
 foreach decl [split $decllist \n] { 
 . . . 
 } 
 return [array get idarray] 
}

Simple C-Structure parsing
Add the typedef. And comments.

31

proc scstruct::declare {typename decllist} { 
 variable decllist_from_typename 
 set decllist_from_typename($typename) $decllist 
} 
 
proc typedef {struct decllist typename} { 
 scstruct::declare $typename $decllist 
} 
 
proc // {args} {}

Simple C-Structure parsing
Need more data types. Int16_t and Uint16_t are self-made types for big endian
words like they are used for Modbus.

32

namespace eval scstruct { 
 variable binformat_from_ctype 
 array set binformat_from_ctype { 
 int8_t c 
 int16_t s 
 int32_t i 
 uint8_t cu 
 uint16_t su 
 uint32_t iu 
 Int16_t S 
 Uint16_t Su 
 } 
}

Simple C-Structure parsing
Add support for C arrays and comment lines in structs.

33

 foreach decl [split $decllist \n] { 
 if {[regexp {^(//.*)?$} $decl]} { 
 # empty line or comment line 
 if {[string is space $decl]} { 
 # empty line 
 } elseif {[regexp -expanded { 
 (\w+) (?# type) 
 \s+ 
 (\w+) (?# identifier) 
 (\[(.*)\])? (?# optional array length) 
 } $decl -> ctype id (len) len]} { 
 set fmtstr $binformat_from_ctype($ctype)$len 
 if {[binary scan $bindata ${fmtstr}a* idarray($id) rest] == 0} { 
 error "Fewer bytes than expected" 
 } 
 set bindata $rest 
 } else { 
 error "Unknown declaration: $decl" 
 } 
 }

Simple C-Structure parsing
Status report: I could by now write a file that is both valid Tcl code and a C
header.

34

#ifndef TELEGRAM_STRUCTS 
#define TELEGRAM_STRUCTS 
// Declarations of structs 
// for telegram exchange 
 
#pragma pack(push, 1) 
 
typedef struct { 
 uint8_t sidx; 
 uint8_t status; 
} SentestShortRsp; 

typedef struct { 
 uint8_t sidx; 
 uint8_t status; 
 uint8_t result; 
 uint8_t testmode; 
 uint32_t timestamp; 
 uint16_t pulse_duration_ms; 
 uint16_t sample_period_ms; 
 uint16_t sample_count; 
 int16_t samples_mV[*]; 
} SentestRsp; 
#pragma pack(pop) 
#endif // TELEGRAM_STRUCTS

Simple C-Structure parsing
Not shown:

35

• The complementary toBinary function, this involves extracting the common
parts; also parsing the struct at the moment of declaration, not at the moment
of usage, remembering the parsed representation and using this when
needed.

• Supporting a flexible array member as last element of a struct (returns * as len
which denotes „the rest“ for the binary command).

• Looking up a known typedef’d struct name in addition to the primitive types.
Structs inside of structs!

Demoing a struct usage for a purpose
The device has a fixed scheme of doing its work in steps of 50 ms. It’s also counting
from 1 to 10 which is the base for a heartbeat. Let’s tap into the counter by listening
to a trace event.

36

DTraceAdd 5 "Main sequence timing" { 
 uint16_t start_ticks; 
 uint8_t duration_ticks; 
 uint8_t state_and_half; 
} -formatter { 
 set state [expr {$state_and_half & 0x7f}] 
 set half [expr {$state_and_half >> 7}] 
 append str "Main seq: $start_ticks ms
$duration_ticks ms half: $half state: $state“ 
}

Gently introducing ukaž
Idea: Can I visualize the data instead of having a plain text output? 
Ad-hoc development plotting.

37

proc gplot {x y} { 
 if {![winfo exists .plotwin]} { 
 toplevel .plotwin 
 ukaz::graph .plotwin.g 
 .plotwin.g set grid on 
 button .plotwin.b_clear -text "Clear" -command { 
 .plotwin.g clear 
 } 
 pack .plotwin.g -expand true -fill both 
 pack .plotwin.b_clear 
 } 
 raise .plotwin 
 .plotwin.g plot [list $x $y] 
}

Demo: Explorative plotting
The extra line produces some computational art.

38

DTraceAdd 5 "Main sequence timing" { 
 uint16_t start_ticks; 
 uint8_t duration_ticks; 
 uint8_t state_and_half; 
} -formatter { 
 set state [expr {$state_and_half & 0x7f}] 
 set half [expr {$state_and_half >> 7}] 
 gplot $start_ticks $state 
 append str "Main seq: $start_ticks ms $duration_ticks ms
half: $half state: $state“ 
}

Thanks to Christian Gollwitzer

Demo: Explorative plotting

39

Example heartbeat counter, counting from 1 to 10, one step per 50 ms.

Demo: Plotting a signal
Now you’ll see what Manfred Rosenberger has seen. Blowing into an O2 sensor.

Loop closed.

40

Afterword
This was written after the presentation, therefore I can use finer print because it was never meant to be beamed onto a wall.

When I felt the urge wo give a talk, after Manfred’s inspiration, I thought I had about 5 minutes worth to say. I’m not advancing the state-
of-the-art of Tcl and the initial idea focused on a widget that was not mine. When I finally started writing something about the topic, many
ideas came up and I thought they were important or at least interesting.

Where does the data come from? The source is a device that is programmed in C and the data is described using C structs. I’ve taken
the opportunity to write a struct parser from scratch at home. To challenge the one I’ve written at work. To show that my basic needs are
served by 30 or 40 lines of code that are quickly assembled by layering up small incremental ideas. To show how I my development
process sometimes works. I start at work and run out of ideas. On the way home on my bicycle (just an accidental reference to Manfred)
an inspiration strikes me. I’ll try it out at home and the next day again at work. That’s already a code kata. I’ve got an idea how to solve a
problem, solve it, and solve it again.

Since „quick“ also was a topic of the talk, I thought it might be a good Idea to show that I often keep the application running while
modifying the code and the key for it is the submodule system that states how to create a UI frame for the submodule, thus delivering the
necessary process of create and destroy. I can simply overwrite procs but not widgets. Modifying running code for ad hoc visualization of
data is a nice trick. However, it is not essential, it just sucked up the available time.

41

Afterword
Did I mention that I get some of my best ideas not when working on a thing but rather when doing something else? Well, after the talk,
still in Vienna, I thought that the ad hoc window for visualizations was too intrusive. I already have to output panes, named output and log,
why not add a plotting pane?

42

toolbar

notebook 
listbox notebook pages

statusbar

text

output log plot

Afterword
Since there’s no screen capture of the panes, let me quickly show what the initial output and log are supposed to show. Here I’m reading
two Modbus registers, containing the values 0 and 138.

43

Afterword
I like to see the actual telegram data which is formatted using these 10+ lines of code. This is by the way the result of a code kata I did in
Vienna. It’s not the original function version 1 I used at work. (In fact, most code you’ve by chance seen in the talk is a code kata style
recreation.)

44

proc HexFormat {bindata {n 8}} { 
 set lines {} 
 set ascii_offset [expr {$n * 5 + 5}] 
 set n_1 [expr {$n - 1}] 
 
 for {set i 0} {$i < [string length $bindata]} {incr i $n} { 
 set linedata [string range $bindata $i $i+$n_1] 
 # hexes: e.g. {0x48 0x65 0x6c 0x6c 0x6f ...} 
 binary scan $linedata cu* values 
 set hexes [lmap v $values {format "0x%02x" $v}] 
 # chars: e.g. {H e l l o ...} 
 set chars [split $linedata ""] 
 set chars [lmap c $chars {expr {[string is print $c] ? $c : "."}}] 
 lappend lines [format "%-${ascii_offset}s%s" [join $hexes] [join $chars]] 
 } 
 
 return $lines 
}

Afterword
Back to the plot window that is supposed to turn into a plot panel in the output ttk::notebook. So instead of gplot the proc is now called
Plot so I can have both implementations at the same time.

45

proc PlotFrame {w} { 
 global gui 
 set f [frame $w] 
 ukaz::graph $f.g 
 $f.g set grid on 
 button $f.b_clear -text "Clear" -command [list $f.g clear] 
 pack $f.g -expand true -fill both 
 pack $f.b_clear 
 set gui(plot) $f.g 
 set gui(plotcombo) $f.cb 
 return $w 
} 
 
proc Plot {x y} { 
 global gui 
 $gui(plot) plot [list $x $y] 
}

Afterword
With this in place I had the next idea: Why enabling the plot ad hoc and disabling it afterwards? Why not have it there all the time? Give it
a name and let me choose an active plot. This feels a bit like using an oscilloscope to probe a signal.

46

proc PlotFrame {w} { 
 global gui 
 set f [frame $w] 
 ttk::combobox $f.cb -values $gui(plotlist) 
 ukaz::graph $f.g 
 $f.g set grid on 
 button $f.b_clear -text "Clear" -command [list $f.g clear] 
 pack $f.cb 
 pack $f.g -expand true -fill both 
 pack $f.b_clear 
 set gui(plot) $f.g 
 set gui(plotcombo) $f.cb 
 return $w 
} 
 
proc Plot {plotname x y args} { 
 global gui 
 if {$plotname ni $gui(plotlist)} { 
 $gui(plotcombo) configure -values [lappend gui(plotlist) $plotname] 
 } 
 if {$plotname eq [$gui(plotcombo) get]} { 
 $gui(plot) plot [list $x $y] with points pointtype filled-circles {*}$args 
 } 
}

Afterword
Auto clear when changing the plot.

47

proc Plot {plotname x y args} { 
 global gui 
 if {$plotname ni $gui(plotlist)} { 
 $gui(plotcombo) configure -values [lappend gui(plotlist) $plotname] 
 } 
 if {$plotname eq [$gui(plotcombo) get]} { 
 # Auto clear when changing the plot 
 if {$plotname ne $gui(plotname)} { 
 $gui(plot) clear 
 set gui(plotname) $plotname 
 } 
 $gui(plot) plot [list $x $y] with points pointtype filled-circles {*}$args 
 } 
}

Afterword
See how the ad hoc usage changes to a permanent feature. Also: a different interpretation of the heartbeat that focuses on the time
between the counts. If I never activate the heartbeat trace, it will never appear in the list of plots, therefore not clobbering the list if I’ve
got too many data sources I want to potentially observe.

48

2 
set last_ticks 0 
DTraceAdd 5 "Main sequence timing" { 
 uint16_t start_ticks; 
 uint8_t duration_ticks; 
 uint8_t state_and_half; 
} -formatter { 
 set state [expr {$state_and_half & 0x7f}] 
 set half [expr {$state_and_half >> 7}] 
 # 1 
 Plot "Heartbeat 1" $start_ticks $state 
 # 2 
 set delta [expr {$start_ticks - $::last_ticks}] 
 set ::last_ticks $start_ticks 
 Plot "Heartbeat 2" $state $delta 
 append str "Main seq: $start_ticks ms $duration_ticks ms half: $half state: $state" 
}

Afterword
See it in action! Yes, indeed 50 ms between the heartbeat ticks.

49

Afterword
Bonus: I mentioned that the character timeout while receiving a telegram is dictated by the I/O latency of the OS (here macOS, but it
looks very similar on Windows) and that it is 16 ms. I instrumented the receiver’s code with a call to Plot, the x-axis is the time in ms
relative to the start of reception, the y-axis is the number of bytes received. The plots show the reception of a short and a long telegram
with a single shot in the left plot and an accumulation of about 50 shots in the right plot. Yes, I’m really into this low level stuff.

50

Afterword
I’ve read somewhere that a presentation is giving the presenter more than it is giving the audience. That was not really my intention but it
indeed happened that the talk gave me a lot and every day at work I will look at my application and occasionally think: „Ah, that’s the
Vienna code!“

I hope the audience still got something out of my attempt to present a simple design that goes from the bytes on the wire to the dots on a
graph.

51

