
License: Creative Commons by-sa v3

A Tclish Espresso Machine:
—Project update (after 7 years)

A programmer talks about espresso.
John Buckman in Vienna, Austria (July 2023)

http://decentespresso.com/doc/

In 2019
I presented here,
and 13,000 people
watched!

https://www.youtube.com/watch?v=Ey30Cg1fM0Q

What is this?
an espresso machine built from scratch

Why?

 - because espresso was pre-scientific

 - espresso machines were hard wired
for one approach only

So? What to do?

https://www.youtube.com/watch?v=AS6FGEWScmU

sensors were needed to
capture real data

An app was needed to display data neutrally and truthfully

https://www.youtube.com/watch?v=zfJ-dNjHdFE&t=3s

Programming espresso shots
a visual espresso-programming tool to encourage experimentation

Communicating
sharing of learning, best practices, integration of research results

https://www.youtube.com/watch?v=3Ib63xBNrzw

https://visualizer.coffee/

https://www.youtube.com/watch?v=VEzH1JBA3k8

Simplifying & Sharing
Distribution of what was learnt to non-experts

Tolerance for imperfection

a UI was needed to display that data neutrally and truthfully

DUI widgets library

https://github.com/decentespresso/de1app/blob/main/documentation/decent_user_interface.md

by Enrique Bengoechea

https://github.com/ebengoechea

Native-looking widgets

App Extensions

App Extension Example

Easily make new UIs
skin development via a language-within-a-language approach

Sample Skin

Skin writing extensions

Screen Variables are Tk text widgets that refresh
add_de1_variable "steam_1" 537 1250 -text "" -font Helv_10_bold -fill
$tappable_text_color -anchor "center" -textvariable {[seconds_text
$::settings(steam_timeout)]}

Mechanism for any Tk widget
3 equal sized charts
add_de1_widget "off espresso espresso_1 espresso_2 espresso_3" graph 20 267 {
 bind $widget [platform_button_press] {
 say [translate {zoom}] $::settings(sound_button_in);

An Over-the-air update mechanism
and global challenges with making that actually work

Challenges
• shipping the same app on Android, Windows, OSX and Linux

• converting the Tcl app into a WebApp using mp4 streaming

• what kind of people embraced Tcl and why

• what kind of people hated Tcl, why, and what happened then

• the move from open-source-but-one-programmer to a full open source multi-
programmer participation via Github and relinquishing control

• challenges of supporting many different resolutions, tablets and Android
versions

• Right-to-left languages

Future
• Surprising findings how Tcl outperforms competing other programs (in other

languages) trying to do similar things

• What hasn't turned out well, and what we’re trying to do about it. Bluetooth is
our main problem.

• The future of Tcl for us, as Python, Javascript, as others launch competing apps

• Cloud integration

• Two apps at once: point-of-sale and order queue management. Mobile-
ordering app. iOS via webapp/mp4.

Other Decent Uses of Tcl & Naviserver

Customer admin Espresso machine customization

Customer support

Quickbooks API Integration

Real-time inventory shopping cart

Espresso machine shopping
Internal staff metrics

Real UPS/Fedex monitoring via APIs

Boxing & Shipping via APIs

