
A new video driver for undroidwish
 (and other goodies)

http://www.androwish.org

http://www.androwish.org/

The inspiration ...

https://jsmpeg.com and based on it jsmpeg-vnc,
refer to the links on jsmpeg.com’s main page.

https://jsmpeg.com/

The inspiration (continued) ...

https://wiki.tcl-lang.org/page/CloudTk
which uses Xvnc and a window
manager to present that X11 session in
a browser using the noVNC client from
https://novnc.com/

However, this solution is not light weight
due to requiring a full X11 environment,
OTOH provides all infrastructure to
serve arbitrary other X11 clients via
browser.

But I want undroidwish being as self
contained as possible ...

https://wiki.tcl-lang.org/page/CloudTk
https://novnc.com/

What is required?

● Some facilities of the ffmpeg libraries.
● Some facilities of the libwebsockets library.
● Some JavaScript for mpeg decoding to a HTML5 canvas

optionally using WebGL.
● Some JavaScript for event reporting (mouse, keyboard, touch).
● A modern web browser (Firefox, Chrome, Safari, Edge,

IE10/11).
● All server side stuff mixed into an SDL2 video driver plus some

http/websockets facility to deliver the required JavaScript/HTML
components to the browser.

➔ undroidwish’s screen/keyboard/mouse is a web browser.

Driver Architecture

jsmpeg Encoder Thread

- wait for YUV420P input

- set busy flag

- encode mpeg frame, set frame ready

- clear busy flag

- repeat

SDL Event
Queue

SDL Event Thread (undroidwish)

- SDL_WaitEvent() which calls
SDL_PumpEvents() internally

- Screen refresh

- handle RPCs, e.g. zoom/pan requests
on the SDL root window etc.

- translate SDL events to X11 events
and distribute it to X11 display event
queue(s)

- repeat

jsmpeg Video Driver PumpEvents()

- service http/ws inputs: transform input
events to SDL events, send
(embedded) files via http get.

- @25 Hz: if encoder thread not busy,
convert RGB frame buffer to YUV420P
and trigger encoder thread.

- if mpeg frame ready, transmit it via
websockets

SDL Timer Thread (undroidwish)

- send timer event @100 Hz

RGB Frame Buffer

call
event

event

event

mutex +
condvar

R/W

R/W

jsmpeg supported platforms

● Linux: OpenGL is supported when an X11 display
connection is available.

● Windows: OpenGL is supported, thanks to Windows’
refusal being window(s)less.

● MacOSX: no OpenGL support yet (but most likely can
be done).

● *BSDs: in theory (i.e. port needs be done, no technical
obstacles expected)

undroidwish X11 emulation
(almost the same blurb as last year)

● Multi-threaded Tk applications are supported.

● SDL2 (and browser) supported input devices work
OOTB (touch screens, joysticks?).

● Many (non-trivial) Tk extensions are working (platform
dependent): Canvas3D, tkpath, tkimg, TkZinc, tktable,
BLT, tktreectrl.

● A server less static Tcl/Tk binary can still be made in
about 6 Mbyte (excluding required shared libraries and
fonts). Overall, the jsmpeg video driver adds 120
kByte excluding dependencies.

Where jsmpeg (somewhat) fails ...

● Single core
● Sub surface performance
● Interplanetary latency
➔ “The discovery of slowness”

● Four cores
● But 1.2 cores constantly @ 100%
➔ Almost usable

Pi Zero

Pi 3

Alternatives to jsmpeg

● libvncserver allows to export a frame buffer to VNC
clients (e.g. noVNC in web browsers). However, this
library is GPL.

● freerdp allows to export a frame buffer to RDP clients.
Licensing unclear. No web based RDP client known.

● A radical different approach like Wtk or GNOME’s
broadway, i.e. render directly to JavaScript/HTML5
canvas in Tk. Much work ahead; OTOH, in GNOME
still a broadwayd (daemon, like an X server?) seems
to be required which is not exactly self contained.

https://github.com/ray2501/tkvlc is an interface to use libVLC (the
core of the VLC media player) in Tcl/Tk for video playback. My
contribution adds an event callback and play back into photo
images in order to use it e.g. as textures in a Canvas3D or in
undroidwish like environments with frame buffers. Example:

Other goodies 1 (tkvlc)

package require Tk
package require tkvlc

set photo [image create photo -width 320 -height 240]
set display [label .tkvlc -image $photo -bg white]
pack $display -fill both -expand 1

tkvlc::init tkvlc0 $photo
tkvlc0 open "video.mp4"
if {![tkvlc0 isplaying]} {
 tkvlc0 play
}

vwait forever

https://github.com/ray2501/tkvlc

Other goodies 2 (topcua)

Tcl binding to OPC Unified Architecture (OPC UA), a machine to
machine communication protocol for industrial automation developed
by the OPC Foundation.

Refer to https://en.wikipedia.org/wiki/OPC_Unified_Architecture for a
detailed overview.

The Tcl binding uses the C based OPC UA implementation from
https://open62541.org/ and can be found in
https://www.androwish.org/index.html/dir?name=jni/topcua.

Documentation is in
https://www.androwish.org/index.html/wiki?name=topcua.

Sample code is in the wiki: https://wiki.tcl-lang.org/page/topcua.

https://en.wikipedia.org/wiki/OPC_Unified_Architecture
https://open62541.org/
https://www.androwish.org/index.html/dir?name=jni/topcua
https://www.androwish.org/index.html/wiki?name=topcua
https://wiki.tcl-lang.org/page/topcua

topcua – Quick demo

● The Tcl server uacam.tcl implements a little
webcam acquiring images using tcluvc. It maps the
camera image and some camera controls (brightness,
contrast etc.) to data variables in its own namespace
in the OPC UA address space.

● A generic OPC UA client can access these variables.

● The Tcl client uacam_client.tcl displays the
image variable as a photo image in a label widget.
The image update is done using a subscription and
monitor in OPC UA speak, i.e. a periodic activity
expressed in terms of OPC UA communication.

WIP: Taygete Scrap Book

● Taygete (Ταϋγέτη): a small retrograde irregular satellite of Jupiter, aka Jupiter
XX.

● Idea: take a webview (the rendering component/library of a web browser), add
a Tcl interface, and mash it up with some Tcl and JavaScript to provide an UX
somewhat resembling Jupyter Notebooks.

● No browser and webserver required, one binary, zero installation, unclouded.

● There’s a “Tiny cross-platform webview library for C/C++/Golang. Uses
WebKit (Gtk/Cocoa) and MSHTML (Windows)” in
https://github.com/zserge/webview which has a Python binding which
inspired the Tcl binding.

● The Tcl binding is about 650 LOC in
https://www.androwish.org/home/dir?name=undroid/twv

● The UI/engine of “Taygete Scrap Book” is an about 1300 LOC mixture of Tcl
and JavaScript in https://www.androwish.org/home/dir?name=undroid/tsb

https://github.com/zserge/webview
https://www.androwish.org/home/dir?name=undroid/twv
https://www.androwish.org/home/dir?name=undroid/tsb

TSB: How it works

In Tcl a webview is created

set W [twv:new -width 800 -height 600 -url … -callback …]

From Tcl JavaScript code can be evaluated using

$W eval JavaScript-code-string

$W call JavaScript-function ?string-argument …?

From JavaScript Tcl code can be evaluated using

window.external.invoke(Tcl-callback-argument);

The bootstrap in the webview constructor is an URL which contains JavaScript to
evaluate Tcl code, which writes the skeleton of a HTML document including the
necessary JavaScript functions to interface with the rest of the Tcl code, i.e. calls

document.write(HTML+CSS+JavaScript-code);

document.close();

TSB: Try it for yourself

A ZIP kit is available in

http://www.ch-werner.de/AndroWish/TSB.kit

It supports the three major desktop platforms

● Windows (32 and 64 bit)

● MacOS (Intel, 64 bit)

● Linux (Intel, 32 and 64 bit, distro agnostic but a decent
version with gnome 3 runtime is required)

http://www.ch-werner.de/AndroWish/TSB.kit

Questions?

