
Using Expect with Coroutines

Colin Macleod

colin.macleod@mailbox.org
CGM on Tcl Wiki

Background

• I work in a financial data processing company, where production
machines are tightly locked down because they are processing
sensitive and confidential data. Logging in requires a special
procedure and then you get a restricted shell to enforce read-only
operations.

• Increasingly, processing is distributed over groups of machines, each
running multiple instances of various server processes, with each
processes logging to files which roll periodically to new files.

• When a problem occurs, we need to quickly find and study the
relevant log to debug the problem.

Expect

• Expect is a well-known tool based on Tcl, which is very good for
scripting interactions with remote systems. So we can use it to
automate logging in to multiple production machines, finding the set
of relevant logs, and searching them for some identifier or relevant
pattern.

• But we have many machines to check, some of which might respond
slowly or not at all. So we want to check all the machines in parallel,
not one-by-one.

Expecting in parallel

• Expect supports handling multiple connections in parallel through the
expect_background command.

• But using this forces us to write each step of processing as a handler
for the event which triggers it. So now we have the well-known
problem of “inversion of control”.

• In particular, maintaining state for each connection (e.g. the list of
relevant files found on that machine) is awkward. The event handlers
only know which connection they were called for, so typically we
need to store state in global arrays indexed by connection (spawn_id
in Expect).

Coroutines

• Coroutines can provide a helpful alternative to inversion of control for
event-driven code.

• So using them together with Expect seems like a natural
development. But I could not find any record of previous work in this
area. Please tell me if did not look hard enough.

• However Expect is a flow-control command with many options, this
makes it difficult to combine with coroutines in a fully general way.

• Luckily I did not need a fully general solution, so was able to write
something simple but which still covers a number of use-cases.

Example of code run per-connection

exp_send "ls -1 --color=never $::filepat\n"

set files {}

co_expect $spawn_id op1> {\n([^\r]+)\r}
while {[yield]} {

set file $::expect_out(1,string)
lappend files $file

}

foreach file $files {
exp_send "gzgrep -i -n '$::target' $file | cut -c-1000\n"

co_expect $spawn_id op1> {\n(\d+):([^\r]+)\r}
while {[yield]} {

set line $::expect_out(1,string)
set text $::expect_out(2,string)
add_match $machine $file $line $text

}
}

co_expect: Expect a set of patterns, resuming
the current coroutine when one matches
proc co_expect {sid args} {

set expect_args [list -i $sid]
set pos -1
foreach pattern $args {

lappend expect_args -re $pattern [list [info coroutine] [incr pos]]
}

after idle expect_background $expect_args
}

