
Using

dictionaries

to store,

manage and

visualize 3D

data
Alexandru Dadalau, EuroTcl 2015

What you will see:

 How I read FE data with Tcl

 How I use Tcl to extract the surface

mesh from FE data

 How is the performance of Tcl dict with

the 3D FE data

Example of 3D

FE mesh
Finite element model

Nodes (x,y,z coordinates)

Elements (nodes +

material properties)

Example of 3D

FE results
Material stresses

Break point

What is the

role of Tcl/Tk

in all this?

Create a software that helps

you to:

 read single FE models,

 configure FE assemblies

 write input files for the

popular FE solvers

NBLOCK,6,SOLID, 1030, 1030
(3i9,6e20.13)

1 3.5000000000000E-02
2 0.0000000000000E+00 3.5000000000000E-02
3 0.0000000000000E+00 0.0000000000000E+00 3.5000000000000E-02
4 3.5000000000000E-02-9.4797148810905E-03 6.2958884784459E-03
5 3.5000000000000E-02 4.1394885988930E-03-7.7629911498991E-03
6 3.5000000000000E-02-1.5834484717831E-02 1.4929881199078E-02
7 3.5000000000000E-02-8.5376950800066E-03 1.6230790225320E-02
8 3.5000000000000E-02 2.2886530059457E-02 9.1420745366150E-03
9 3.5000000000000E-02 1.6340131003353E-02-1.3586974418736E-03
10 3.5000000000000E-02 7.5699484761175E-03-1.9193690274370E-02

EBLOCK,19,SOLID, 2065, 1950
(19i9)
1 120 123 207 201 460 448 371 370
2 460 448 371 370 461 449 378 377
3 461 449 378 377 462 450 385 384
4 462 450 385 384 463 451 392 391
5 463 451 392 391 65 62 399 398
6 123 124 204 207 448 492 372 371
7 448 492 372 371 449 493 379 378
8 449 493 379 378 450 494 386 385
9 450 494 386 385 451 495 393 392

10 451 495 393 392 62 61 400 399
11 124 125 205 204 492 496 373 372
12 492 496 373 372 493 497 380 379

Read FE data Show FE data

Element IDs Node IDs

Node IDs Node coordinates

Paul‘s Obermeier Tcl3D package
(http://www.tcl3d.org/)

http://www.tcl3d.org/

A matter of

efficiency

Available volume mesh Display only surface mesh

A surface mesh is a collection of

exteriour element faces.

An element face is exteriour when

it belongs to just one element.

Volume mesh Isolated element Element faces

interiour

exteriour

Extract

surface

mesh

This is where Tcl

dictionaries come

into play.

Naive search of

external faces:
Loop through all element IDs

Loop through all element faces
Get first list of face nodes
Loop through all elements

Loop through all element faces
Get second list of face nodes
If first and second list have same nodes

This is an internal face
Exit loop

End If
End Loop

End Loop
If nothing found, this is an external face

End Loop
End Loop

Naive search of

external faces:
Loop through all element IDs

Loop through all element faces
Get first list of face nodes
Loop through all elements

Loop through all element faces
Get second list of face nodes
If first and second list have same nodes

This is an internal face
Exit loop

End If
End Loop

End Loop
If nothing found, this is an external face

End Loop
End Loop

Naive search of

external faces:
Loop through all element IDs

Loop through all element faces
Get first list of face nodes
Loop through all elements

Loop through all element faces
Get second list of face nodes
If first and second list have same nodes

This is an internal face
Exit loop

End If
End Loop

End Loop
If nothing found, this is an external face

End Loop
End Loop

Naive search of

external faces:
Loop through all element IDs

Loop through all element faces
Get first list of face nodes
Loop through all elements

Loop through all element faces
Get second list of face nodes
If first and second list have same nodes

This is an internal face
Exit loop

End If
End Loop

End Loop
If nothing found, this is an external face

End Loop
End Loop

Naive search of

external faces:
Loop through all element IDs

Loop through all element faces
Get first list of face nodes
Loop through all elements

Loop through all element faces
Get second list of face nodes
If first and second list have same nodes

This is an internal face
Exit loop

End If
End Loop

End Loop
If nothing found, this is an external face

End Loop
End Loop

Naive search of

external faces:
Loop through all element IDs

Loop through all element faces
Get first list of face nodes
Loop through all elements

Loop through all element faces
Get second list of face nodes
If first and second list have same nodes

This is an internal face
Exit loop

End If
End Loop

End Loop
If nothing found, this is an external face

End Loop
End Loop

Naive search of

external faces:
Loop through all element IDs

Loop through all element faces
Get first list of face nodes
Loop through all elements

Loop through all element faces
Get second list of face nodes
If first and second list have same nodes

This is an internal face
Exit loop

End If
End Loop

End Loop
If nothing found, this is an external face

End Loop
End Loop Computing time has quadratic

dependency on the element number.

Dictionary based

search of external

faces:
Loop through all element IDs

Loop through all element faces
Get list of face nodes
Sort list of face nodes
This is the trick:
dict set faces {*}$facenodes $elemid

End Loop
End Loop

Simple example:

1 2

34

5 6

78

9

10

11

12

Element ID 1 Element ID 2

Node ID

Simple example:

1 2

34

5 6

78

9

10

11

12

1 {2 {3 {4 {1}} 5 {6 {1}}} 4 {5 {8 {1}}}}
2 {3 {6 {7 {1 2}} 9 {10 {2}}} 6 {9 {11 {2}}}}
3 {4 {7 {8 {1}}} 7 {10 {12 {2}}}}
5 {6 {7 {8 {1}}}}
6 {7 {11 {12 {2}}}}
9 {10 {11 {12 {2}}}}

The face refresented by nodes 2,3,6,7 is identified as internal face, because it

is shared by two elements (1 and 2)

The dictionary based search

algorithm creates this dictionary

structure:

Benchmark model

FE model of a ball screw, coarse mesh

 NODES: 15,000

 ELEMENTS: 66,000

 Time to extract external surfaces:

4 seconds

Benchmark model

FE model of a ball screw, medium mesh

 NODES: 60,000

 ELEMENTS: 312,000

 Time to extract external surfaces:

15 seconds

Benchmark model

FE model of a ball screw, fine mesh

 NODES: 311,000

 ELEMENTS: 1,477,000

 Time to extract external surfaces:

72 seconds

Benchmark model

Computing time has linear

dependency on the element number.

Live

software

demo

Split the

surface

into

geometry

features

Keywords:

Mesh data structure,

Mesh Traversal

dict set modeldata nodes {1 {5.25E-02 0 0 0 0 0} 2 {0.0E+00
5.25E-02 0 0 0 0} 3 {...
dict set modeldata elems {1 {{98 101 174 170 340 334 310 309}
1 0} 2 {{340 334 310 309 341 335 317 316} 1 0} 3 {....
dict set modeldata face2normal {1.1 {0.0 0.0 1.0} 34.1 {0.0
0.0 1.0} 67.1 {...
dict set modeldata edge2faces {98.101 {1.1 58.1} 98.170 {1.1
34.1} 170.174 {...
dict set modeldata face2edges {1.1 {98.101 98.170 170.174
101.174} 34.1 {...
dict set modeldata node2faces {101 {1.1 4.1 37.1 58.1} 98 {1.1
34.1 58.1 67.1} 170 {...
dict set modeldata surfaces {1 {1.1 4.1 34.1 58.1 7.1 37.1
31.1 67.1 61.1 10.1 40.1 28.1 ...

Mesh data structure as a Tcl dictionary:

Thank you for

your

attention!

Alexandru Dadalau, EuroTcl 2015

https://www.meshparts.de

https://www.meshparts.de/

