
Itcldoc

History

• When starting to implement ATWF I wanted to be able to
do inline documentation

• There are some tools like tcldoc, autodoc and zdoc all do
not allow to document Itcl an TclOO

• Idea to use itcl-ng parser for splitting up sources
• Found cmdSplit and parsetcl in the wiki
• Decision to use a modified version of cmdSplit
• Decision to use a tree structure for the scanned info

influenced by parsetcl

Goal of the Tool

• Collect information of the contents of Tcl scripts
• Be able to also parse Itcl-ng and TclOO
• Be able to parse ensemble commands like namespace and

info
• The original source can be generated again including

indentation etc.
• Allow Javadoc like output as well as cross reference

output

General Structure
• Use of a modfied version of cmdSplit, which preserves a

lot more information like indentation, newlines,
comments etc.

• Recursive parsing of the parameters of a command
• Recognition of regexp constructs and namespace parts
• Storing the scanned info in dicts
• Further scanning of the input parts using a tree structure

and reorganizing tree parts in that structure
•

Scanning Details (1)
• cmdSplit parses a script into commands with parameters
• cmdsplit parses parses whitespace, newlines and

comments into „special“ commands
• Further scanning of the scanned commands

S canning Details (2)

• Further scanning using special characters as tokens
second string is token name

 { LC } RC
 [LB] RB
 (LP) RP
 “ QUOTE $ DOLLAR
 * STAR \ BACKSLASH
 + PLUS - MINUS
 % MOD / DIV
 | OR & AND
 < LT > GT
 = EQUAL @ AT
 ? QUEST : COLON
 . DOT ; SEMICOLON
 ! BANG

S canning Details (3)

• This allows recognition of arrays, rexexp constructs etc.
• Transforming subtrees to different subtrees

 a DOLLAR node and a STRING node → VARREF node
 a STRING, a LP, a STRING, a RP mode → ARRAYREF node
 a COLON, a COLON, a STRING, a COLON, a COLON, a STRING
node → NAMESPACE or ITCLCMD or TCLOOCMD node

• Further scanning of the scanned commands

S canning Details (4)

• Transformation is done using tdom by putting the original
scanned info into a tdom tree and the manipulating the
tdom tree

• Output for saving on file system is can be xml with the
node names as xml tags

• additional info like the indexes as attributes for the tag
names

• The STRING nodes are representated as text nodes in
dom tree

• The xml output can be converted to dicts and then used as
format for saving onto file system

S canning Details (5)

• The scanning is done on a per script base
• Every source command with the scripts creates its own

scanned file
• May be influenced by nagelfar
• Cross reference can be produced by using a tree of parsed

files

Status
• This project is a work in progress
• ATM not much activity because of other projects
• Possibly influenced in the future from ATWF
• Will be continued!

Conclusions

• Work in progress
• Priority lower than other project of me like ATWF

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

