Tablelist as Multi-Column Tree Widget Csaba Nemethi Page 1 of 10

Tablelist as Multi-Column Tree Widget
by

Csaba Nemethi

csaba.nemethi@t-online.de
http://www.nemethi.de

INFOSYS GmbH, Unterhaching, Germany

csaba.nemethi@infosys-online.de
http://www.infosys-online.de

Contents

1. A Quick Tablelist Overview

2. Using a Tablelist as Multi-Column Tree Widget

3. Example: a Directory Viewer Based on a Tablelist
4. Example: a Widget Browser Based on a Tablelist

mailto:csaba.nemethi@t-online.de
http://www.infosys-online.de/
mailto:csaba.nemethi@infosys-online.de
http://www.nemethi.de/

Tablelist as Multi-Column Tree Widget Csaba Nemethi Page 2 of 10

1. A Quick Tablelist Overview

The Tablelist package (see http://www.nemethi.de) contains:

» the implementation of the tablelist mega-widget (in pure Tcl/Tk code), including a general
utility module for mega-widgets;

* 9 demo scripts that create tablelist widgets in classical look;

* 10 demo-scripts that create tablelist widgets in tile look (9 of them being tile-based
counterparts of the above);

* a comprehensive Tablelist Programmer's Guide in HTML format;

* detailed reference pages in HTML format.

A tablelist is a multi-column listbox and tree widget, supporting a large number of options and
widget subcommands. Here are just a few of them:

 Static- and dynamic-width columns.

» The columns are, per default, resizable.

* Interactive switching between static and dynamic column widths.

» Supported column alignments: left, right, and center.

» The font, colors, text, and other options can be set individually for the columns (and their
titles), rows, and cells.

* Support for column separators and row stripes.

» Support for hidden columns and rows.

» Newline characters in the elements give rise to multi-line cells.

» Support for displaying the contents of individual columns in word-wrapped multi-line
rather than snipped form.

* Support for embedded images in the cells and header labels, as well as for embedded
windows in the cells.

* Built-in multi-column sort capability.

* Support for moving a column or row programmatically or interactively (with the left mouse
button).

+ Full tile support.

» Support for interactive editing with a great variety of widgets from the Tk core and the
packages tile, BWidget, Iwidgets, combobox, and Mentry.

» Support for cell- and column label-specific balloon help.

» Support for arbitrary attributes at widget, column, row, and cell levels.

http://www.nemethi.de/

Tablelist as Multi-Column Tree Widget Csaba Nemethi Page 3 of 10

2. Using a Tablelist as Multi-Column Tree Widget

When a tablelist is used as a tree widget, one of its columns (specified by the -treecolumn
option) will display the tree hierarchy with the aid of indentations and expand/collapse controls.
The look & feel of that column is controlled by the -treestyle option, which includes, among
others, the images used for displaying the expand/collapse controls, the indentation width, and
whether expand/collapse controls and indentations are to be protected when selecting a row or
cell. The Tablelist package provides a great variety of tree styles, and chooses the correct default
style depending on the windowing system, operating system version, and tile theme:

¥ ‘3 tablelist - 5] tablelist = 5 tablelist v 5] tablelist
Y icros ||~ i demos | IR comos
» [doc b [doc O] doc ¥] doc
aqua baghira gtk klearlooks
- 3 tablelist v 5 tablelist 5 tablelist = 3 tablelist
i cemos [REEER N demos B demos |
+ [O] doc » [doc] doc] doc
oxygenl oxygen2 phase plastique
4] tablelist =l £5 tablelist 4 (3 tablelist =l (- tablelist
>l demos B demos | b [] demos
O] doc &[] doc 23 doc [#] doc
vistaAero vistaClassic win7Aero win7Classic
= 5 tablelist = {5 tablelist = 5 tablelist = {5 tablelist
B demoz B demos B demos demaos
[doc [doc [doc [doc
winnative winxpBlue winxpOlive winxpSilver

In a tablelist used as a multi-column tree widget, every row is at the same time a tree node, having
exactly one parent node and any number of child nodes. The tree's origin is the invisible root
node, which has no parent itself and whose children are the top-level nodes.

Child nodes can be inserted by invoking the insertchild(ren) or insertchildlist
subcommand of the Tcl command associated with a tablelist widget. It is common practice to do
this from within the command specified as the value of the —expandcommand option if the node
being expanded (with the aid of the expand or expandall subcommand) has no children yet.
There is also a -collapsecommand option, specifying the command to be invoked when
collapsing a node (with the aid of the collapse or collapseall subcommand).

Some of the other frequently used tree-related subcommands are childcount, childkeys, and
expandedkeys. The latter enables you to restore the expanded states of the items after
redisplaying the tablelist widget's contents.

Tablelist as Multi-Column Tree Widget Csaba Nemethi Page 4 of 10

3. Example: a Directory Viewer Based on a Tablelist

The script dirViewer.tcl in the demos directory displays the contents of the volumes mounted
on the system (e.g., the root / on UNIX and the local drives on Windows) in a tablelist used as
multi-column tree widget:

i ' Contents of the Directory "/home/csabaltcitk/ActiveTci8.5"

Mame Size | Date Modified
= 3 bin 2008-11-17 22:03
|_] base-tcld.5-thread-linux-ixG6 1.1 MB | 2008-10-16 18:36
|_] base-tcl& 5-thread-linux-ixg6 =0 24 MB | 2008-10-16 18:36
|_] base-tk8.5-thread-linux-ix86 1.8 MB | 2008-10-16 18:36
|] tclsha.5 10.1 KB | 2008-11-17 22:03
|] teacup 22MB | 2008-10-16 18:36
|_] wish8.5 10.7 KB | 2008-11-17 22:03
— 4 demos 2008-11-17 22:03
w 3 TkB.5 2008-11-17 22:03
[» Ejimages 2008-11-17 22103
L] anilabel tcl 6.6 KB | 2008-10-16 18:36
L] aniwave tcl 3.5 KB | 2008-10-16 18:36
L] arrow tcl TOKE | 2008-10-16 18:36
|_] bind.tcl 29 KB | 2008-10-16 18:36
|_] bitmap.tcl 14 KB | 2008-10-16 18:36
|_] browse 1.8 KB | 2008-10-16 18:36
|_] button tcl 1.5 KB | 2008-10-16 158:36
|_] check.icl 23 KB | 2008-10-16 18:36
L] clrpick.tcl 1.5 KB | 2008-10-16 18:36
|_] colors.tel 49 KB | 2008-10-16 18:36 i
Refresh Parent Close

By double-clicking an item or invoking the single entry of a pop-up menu within the body of the
tablelist, you can display the contents of the folder corresponding to the selected item. To go one
level up, click on the Parent button.

In the following code fragments the tablelist options and subcommands introduced in version 5.0
of the package are shown in red color.

package require Tk 8.3
package require tablelist 5.0

#

Add some entries to the Tk option database
#

set dir [file dirname [info script]]

source [file join $dir option.tcl]

#

Create three images

#

set clsdFolderImg [image create photo -file [file join $dir clsdFolder.gif]]
set openFolderImg [image create photo -file [file join $dir openFolder.gif]]
set fileImg [image create photo -file [file join $dir file.gif]]

Tablelist as Multi-Column Tree Widget Csaba Nemethi Page 5 of 10

displayContents
#
Displays the contents of the directory dir in a tablelist widget.

proc displayContents dir {
#
Create a vertically scrolled tablelist widget with 3
dynamic-width columns and interactive sort capability

#
set tf .tf
frame S$tf

set tbl $tf.tbl
set vsb S$tf.vsb
tablelist::tablelist $tbl \
-columns {0 "Name" left
0 "Size" right
0 "Date Modified" left} \
-expandcommand expandCmd -collapsecommand collapseCmd \
-yscrollcommand [list $vsb set] -height 20 -width 80
if {[$tbl cget -selectborderwidth] == 0} {
$tbl configure -spacing 1
}
$tbl columnconfigure 0 -formatcommand formatString -sortmode dictionary
$tbl columnconfigure 1 -formatcommand formatSize -sortmode integer
$tbl columnconfigure 2 -formatcommand formatString
scrollbar $vsb -orient vertical -command [list $tbl yview]

#

Create three buttons within a frame child of the main widget
#

set bf .bf

frame S$bf

set bl $bf.bl

set b2 S$bf.b2

set b3 $bf.b3

button $bl -width 10 -text "Refresh"

button $b2 -width 10 -text "Parent"

button $b3 -width 10 -text "Close" -command exit

#
Populate the tablelist with the contents of the given directory

#
$tbl sortbycolumn 0
putContents $dir $tbl root

The command to be invoked whenever an item corresponding to a nonempty folder gets expanded
is specified as the value of the -expandcommand option. As discussed later, the expandCmd
procedure will insert the children of the row that is about to be expanded, if it has no children yet.
Similarly, the command specified by the -collapsecommand option will be invoked
automatically when collapsing an item. As shown below, it will merely restore the image shown in
the first column to the one displaying a closed folder.

Tablelist as Multi-Column Tree Widget Csaba Nemethi Page 6 of 10

putContents

#

Outputs the contents of the directory dir into the tablelist widget tbl, as
child items of the one identified by nodeIdx.

proc putContents {dir tbl nodeIdx} {

if {[string compare $nodelIdx "root"] == 0} {
if {[string compare $dir ""] == 0} {
wm title . "Contents of the Workspace"
} else {
wm title . "Contents of the Directory \"[file nativename $dir]\""

}

Stbl delete 0 end
set row 0
} else {
set row [expr {$nodeldx + 1}]

Build a list from the data of the subdirectories and
files of the directory dir. Prepend a "D" or "F" to
each entry's name and modification date & time, for
sorting purposes (it will be removed by formatString).

HH= H= = H o

set itemList {}
if {[string compare $dir ""] == 0} {
foreach volume [file volumes] {
lappend itemList [list D[file nativename $volume] -1 D $volume]

}
} else {
foreach entry [glob -nocomplain -types {d f} -directory $dir *] {
if {[catch {file mtime $entry} modTime] != 0} {
continue
}
if {[file isdirectory S$entry]l} {
lappend itemList [list D[file tail S$entry] -1 \
D[clock format $modTime -format "%Y-%m-%d $H:%M"] Sentry]
} else {
lappend itemList [list F[file tail S$entry] [file size $entry] \
F[clock format $modTime -format "%Y-%m-%3d SH:3M"] ""]
}
}
}
#

Sort the above list and insert it into the tablelist widget
tbl as list of children of the row identified by nodeIdx

#

set itemList [$tbl applysorting $itemList]

Stbl insertchildlist $nodelIdx end S$itemList

#

Insert an image into the first cell of each newly inserted row
#

global clsdFolderImg fileImg

foreach item $itemList {

Tablelist as Multi-Column Tree Widget Csaba Nemethi Page 7 of 10

set name [lindex $item end]

if {[string compare $name ""] == 0} { # file
$tbl cellconfigure $row,0 -image $fileImg
} else { ;# subdirectory

$tbl cellconfigure $row,0 -image $clsdFolderImg
$tbl rowattrib $row pathName S$name

#
Mark the row as collapsed if the subdirectory is non-empty
#
if {[file readable S$name] && [llength \
[glob -nocomplain -types {d f} -directory $name *]] != 0} {
$tbl collapse S$row
}
}
incr row
}
if {[string compare $nodeldx "root"] == 0} {
#
Configure the "Refresh" and "Parent" buttons
#
.bf.bl configure -command [list refreshvView $dir $tbl]
set b2 .bf.b2
if {[string compare $dir ""] == 0} {
$b2 configure -state disabled
} else {
$b2 configure -state normal
set p [file dirname $dir]
if {[string compare $p $dir] == 0} {
$b2 configure -command [list putContents "" $tbl root]
} else {
$b2 configure -command [list putContents $p $tbl root]
}
}
}

The last argument of this procedure indicates the tree node to become the parent of the items
displaying the contents of the directory passed as first argument. If this parent is the invisible
root node then we first delete the current items of the tablelist widget tb1.

Instead of inserting the child items individually with the aid of the new insertchild(ren)
tablelist subcommand, here we add the relevant data to a list of items and then invoke the much
more performant insertchildlist subcommand. Also, instead of first inserting the items and
then sorting them via refreshsorting (which is another new tablelist subcommand), we first
perform the necessary sortings on the above-mentioned list of items by invoking the
applysorting subcommand. Again, this is much faster than sorting the already inserted child
items.

We mark every newly created row corresponding to a non-empty subdirectory as collapsed by
invoking the collapse subcommand. This will prepend an expand/collapse control to the
contents of the first column, whose column index 0 is the default value of the -treecolumn
configuration option.

This procedure also illustrates an effective technique based on the -formatcommand column

Tablelist as Multi-Column Tree Widget Csaba Nemethi Page 8 of 10

configuration option: In the tablelist widget's internal list, the names and modification times of
the directories and files are preceded by a D and F, respectively. This makes sure that the
directories will sort before the files (when sorting in ascending order). When displaying the items,
the Tablelist code will automatically invoke the formatString procedure, which removes the
first character. Similarly, in the widget's internal list, the size of a directory is set to -1, which
sorts before the sizes of the files. The formatSize procedure, invoked automatically when
displaying the items, replaces this value with an empty string:

formatString

#

Returns the substring obtained from the specified value by removing its first
character.

proc formatString val {
return [string range $val 1 end]

formatSize

#

Returns an empty string if the specified value is negative and the value
itself in user-friendly format otherwise.

proc formatSize val {
if {$val < 0} {
return ""
} elseif {$val < 1024} {
return "$val bytes"
} elseif {$val < 1048576} {
return [format "%.1f KB" [expr {$val / 1024.0}]1]
} elseif {S$val < 1073741824} {
return [format "%.1f MB" [expr {$val / 1048576.0}]]
} else {
return [format "%.1f GB" [expr {$val / 1073741824.0}]]

Besides its common task of inserting the children of the row to be expanded, the expandCmd
procedure shown below also changes the image contained in the first column to the one displaying
an open folder. The collapseCmd procedure restores the image to the one displaying a closed
folder:

expandCmd

#
#
Outputs the contents of the directory whose leaf name is displayed in the
first cell of the specified row of the tablelist widget tbl, as child items
of the one identified by row, and updates the image displayed in that cell.
proc expandCmd {tbl row} {
if {[$tbl childcount S$row] == 0} {
set dir [$tbl rowattrib $row pathName]
putContents $dir $tbl S$row
}

if {[$tbl childcount S$row] != 0} {
global openFolderImg
$tbl cellconfigure $row,0 -image $openFolderImg

Tablelist as Multi-Column Tree Widget Csaba Nemethi Page 9 of 10

}
}
B o _____
collapseCmd
#

Updates the image displayed in the first cell of the specified row of the
tablelist widget tbl.

proc collapseCmd {tbl row} {
global clsdFolderImg
$tbl cellconfigure $row,0 -image $clsdFolderImg

The procedure refreshview, associated with the Refresh button, is implemented as follows:

refreshvView

#
Redisplays the contents of the directory dir in the tablelist widget tbl and
restores the expanded states of the folders as well as the vertical view.

proc refreshview {dir tbl} {

#

Save the vertical view and get the path names

of the folders displayed in the expanded rows

#

set yView [$tbl yview]

foreach key [$tbl expandedkeys] {
set pathName [$tbl rowattrib $key pathName]
set expandedFolders($pathName) 1

}

#
Redisplay the directory's (possibly changed) contents and restore
the expanded states of the folders, along with the vertical view

#

putContents $dir $tbl root
restoreExpandedStates $tbl root expandedFolders
$tbl yview moveto [lindex $yView 0]

Before redisplaying the tablelist's contents via putContents, we get the full keys of the currently
expanded items with the aid of the expandedkeys tablelist subcommand and insert the
correspondig subdirectory paths into the array expandedFolders. After redisplaying the
(possibly changed) contents of the directory given as first argument, we pass this array to the
restoreExpandedStates procedure shown below:

restoreExpandedStates

folders whose path names are the names of the elements of the array specified

#
#
Expands those children of the parent identified by nodeIdx that display
#
by the last argument.

proc restoreExpandedStates {tbl nodeIdx expandedFoldersName} {
upvar $expandedFoldersName expandedFolders

foreach key [$tbl childkeys $nodeIdx] {

Tablelist as Multi-Column Tree Widget Csaba Nemethi Page 10 of 10

set pathName [$tbl rowattrib $key pathName]

if {[string compare $pathName ""] != 0 &&
[info exists expandedFolders($pathName)]} {
$tbl expand S$key -partly
restoreExpandedStates $tbl $key expandedFolders

}

displayContents ""

The procedure retrieves the list of full keys of the children of the parent node indicated by
nodeIdx, by means of the childkeys tablelist subcommand. It then loops over this list, and for
each key for which the corresponding row was previously expanded, it invokes the expand
tablelist subcommand and then calls itself recursively to restore the expanded states of that row's
children.

The last line of the script invokes the procedure displayContents with an empty string as
argument, i.e., displays the volumes mounted on the system.

4. Example: a Widget Browser Based on a Tablelist

Just like the file browse.tcl in the demos directory, the new script browseTree.tcl in the
same distribution directory contains a procedure demo::displayChildren that displays
information about the children of an arbitrary widget in a tablelist contained in a newly created
top-level widget. While the tablelist created by the procedure demo: :displayChildren in the
file browse.tcl is a multi-column listbox, the one created by the procedure of the same name in
the file browseTree.tcl is a multi-column tree widget:

"' "_ . Children of the DemoTop Widget " .browseTop"

Path Mame | Class | x | h i | Width | Height | Mapped | Viewable | Manager |—
~ if Frame 0 L] 246 182 yes yes pack
i thl Tablelist 0 Ly} 033 182 yes YES grid
[hdr Frame 2 2 5929 18 yes YES pack
[» body Text 2 20 029 170 yes YEs pack
b Listbox o] 1] 1 1 no no
[v=b Scrollbar 533 1] 13 182 yes yES grid
[menu Menu 0 Li] 1 1 no no W |
[bf Frame 0O 192 546 48 yeS yes pack
A

Refresh Parent Close

The script browseTree.tcl is discussed in detail in Tablelist Programmer's Guide included in
the Tablelist 5.0 release. It is quite similar to the one discussed in the previous section. The main
difference is related to the way child items are inserted and sorted: Since the performance is not
as critical as in the case of the directory viewer, this script inserts the child items individually with
the aid of the insertchild(ren) subcommand and then sorts them (if needed) via
refreshsorting.

	by
	Csaba Nemethi
	INFOSYS GmbH, Unterhaching, Germany

	Contents
	1. A Quick Tablelist Overview
	2. Using a Tablelist as Multi-Column Tree Widget
	3. Example: a Directory Viewer Based on a Tablelist
	4. Example: a Widget Browser Based on a Tablelist

