
1/18

�

�

�

�

�

�

	

Hoffmann RD
http://www.h-rd.org/

TWD –
a simple TCL web dispatcher

Dr.ir. M. Hoffmann
Hoffmann RD
Wageningen

email: tcl@h-rd.org
c© Hoffmann RD

talk EuroTCL 2009

2/18

�

�

�

�

�

�

	

TCL and the Web
• TCL has a lot of deployment options for server based Web applica-

tions.

• It seems that the use of TCL on the Web is declining.

• Most Web things are string based:

– Generating html.

– Reading and parsing request data.

Good match for TCL

• TCL has quite a few good database interfaces.

• AOLserver, Rivet, and mod TCL are “complicated” to deploy on a

standard shared hosting account.

• NEW: Woof! (I don’t know enough about it, but it seems to have

a similar deployment scope.)

3/18

�

�

�

�

�

�

	

Background for TWD
• Develop a simple application for programmers.

• No server required (i.e. no own web server).

• Supply user and session data to programmer.

• Leave application development to programmer.

• A lot of potential to reuse existing TCL Web applications:

– T’s wiki

– Rivet things

– Wikit

– THP

– EFX

– UCOME

– http://wiki.lri.fr:8000/wiki/wiki.wiki

4/18

�

�

�

�

�

�

	

Why TWD

Look at php et al:

• PmWiki: very nice application, but programming is counter-intuitive

to plain text based pages.

• Drupal: It can do anything, but it is often easier to program some-

thing than to understand Drupal.

• OpenACS (TCL): Complicated to setup (except Debian) and under-

stand.

• Wikit (TCL): Nice and simple, but on its own not enough for public

web pages.

5/18

�

�

�

�

�

�

	

GOAL

Provide a

• simple foundation

• for programmers to build

• CUSTOMISED Web applications.

6/18

�

�

�

�

�

�

	

What is TWD

• TWD is based on T’s Wiki, an adaption of TiddlyWiki.

• TWD supplies a central place to dispatch to TCL proc, based on

URL.

• SQLite db is used to store user data and session data:

– SQLite handles concurrency.

– SQLite: ACID.

– SQLite is very good integrated with TCL and matches the string

based paradigm of TCL.

• Currently TWD uses (N)CGI, planned are FCGI and SCGI.

• Starkit enabled.

7/18

�

�

�

�

�

�

	

What TWD is not

• AOLserver, use it when you need high performance AND you are

willing to run your own server.

• mod TCL, similar to above.

• NCGI, just supplies primitives for request handling etc., no user and

session handling.

8/18

�

�

�

�

�

�

	

Why “no server required” ?

• Running a httpd (server) is a headache:

– Is it up or down?

– Does it leak memory?

– Not possible on standard shared hosting, requires running your

own (v)server -> even more work (security).

• Running on a DBMS (MySQL) means:

– Deployment is more than simple file copy.

– Changing hosting provider is more work.

– Testing requires setup of server environment.

9/18

�

�

�

�

�

�

	

Potential uses for TWD

• Running TCL apps behind dispatcher allows e.g. authenticated Wikit.

• Embed calls to TWD in PmWiki.

• Integrate with email (SMTP, POP3, IMAP4).

• Simple database driven sites (mini OpenACS).

10/18

�

�

�

�

�

�

	

TWD invocation

• index.cgi: set up environment

• main.tcl: load required files and extensions

• twd.tcl: dispatcher

11/18

�

�

�

�

�

�

	

Dispatch

process request

proc ::twd::main {} {

check user session

session_check

set path [::twd::getenv PATH_INFO ""]

switch -glob -- $path {

{} { ::tswiki::serve_wiki $action }

/templates/* { serve_template $path $action }

/ { ::tswiki::serve_wiki $action }

/* { serve_file $path }

} ;# */

}

12/18

�

�

�

�

�

�

	

User db

-- user table

CREATE TABLE users(

username TEXT PRIMARY KEY, -- username

password TEXT, -- md5 password

permissions TEXT -- user permissions

);

Very basic setup, can be extended by additional, programmer supplied

tables.

13/18

�

�

�

�

�

�

	

Session db

currently cookie based, URL rewriting planned

-- sessions cookies

CREATE TABLE twdcookies(

cookie TEXT PRIMARY KEY, -- The login cookie

username TEXT, -- The user to log in as

expires NUMBER, -- When this cookie expires

ipaddr TEXT, -- IP address of browser

agent TEXT -- User agent of browser

);

14/18

�

�

�

�

�

�

	

Examples – simple template

<html><head><title>Tiny TWD time server</title></head>

<body><h1>Time server</h1>

Time now is: <%=[clock format [clock seconds]]%>

<hr>

</body></html>

15/18

�

�

�

�

�

�

	

Examples – check user permissions

Process normal request or login/logout operation.

proc ::tswiki::tswiki_action_default {} {

variable ::twd::u_permissions

variable ::twd::body

variable dir_tswiki_html

if {!$u_permissions(read)} {

login page (no anonymous access)

set body [subst -novariables \

[::twd::read_template login.html $dir_tswiki_html]]

} else {

normal wiki page

set body [subst -novariables \

[::twd::read_template wiki.html $dir_tswiki_html]]

#log "$body"}}

16/18

�

�

�

�

�

�

	

Examples – T’s wiki actions

proc serve_wiki {action} {

variable db $::twd::db

switch -exact -- $action {

{} tswiki_action_default

login action_login

logout action_logout

changepassword action_change_password

getuserlist action_get_user_list

updateuser action_update_user

gethistory action_get_history

save action_save

delete action_delete

rss action_rss

default action_error}}

17/18

�

�

�

�

�

�

	

Future Development

• Really integrate with Kit’s.

• Set up example site.

• Add session handling based on URL-rewrite.

• Settle down for ONE default TWD template mechanism.

• Increase coverage of test suite.

• Integrate VFS with SQLite: Web pages stored in VFS file (and at

the same time in db).

• Set up source repository (Fossil or Berlios?).

18/18

�

�

�

�

�

�

	

Questions – Discussion – Suggestions

TWD is currently driven by my needs. Suggestions and ideas welcome.

Open questions:

• Any drawbacks to require sqlite3?

• How are path’s handled in Kit’s vs. tclsh?

• A simple parser would be nice. Which?

• SUGGESTIONS?

TWD is (in part) based on T’s wiki and NCGI. Thanks.

