
Mavrig
a Tcl application construction kit

Jean-Claude Wippler
Equi 4 Software, NL

EuroTcl 2008, Strasbourg, FR

Let’s write an app

• Tons of packages to build with - Tcllib, etc

• Choose:
! file structure, dev vs release dirs
! packages & extension versions
! naming conventions
! inter-subsystem connections

• and an object system, and a database, and ...

2

So many details

• Haven’t written one line of code yet!

• Many - boring - choices

• Can’t easily revisit these choices later

• Can I at least re-use my next code?

• Nope, because I made lots of choices…

• Give me a way out, please!

3

DNTO

• I don’t need another “framework”

• I want to retain full control of my app

• I just want more convenience out of the box

• But above all… Do Not Take Over

• Utility code, conventions, “evolvability”

4

What’s an Application?

• Command Line

• GUI

• Network Server

• Network Client

• Web-App 2.0!

• Embedded

• My favorite procs

• New Packages

• C/C++ Extensions

• Plug-ins, “Themes”

• CONVENTIONS…

5

Does it matter?

• In theory, no - in practice, you bet

• So many silly choices up front

• Choices hamper change and “agility”

• Choices are the enemy of scripting

• Why can’t we just write code & tests?

• Yet allow for changes as you gain insight

6

Starkits

• Place all your stuff in a “vfs” directory

• Add “main.tcl” & put extensions in “lib/”

• Develop as usual, nothing changes

• When ready - wrap and ship - period!

• But we could do so much more…

7

What can we learn?

• Some conventions are real time savers

• Use them and you get tools to help - SDX

• New conventions can benefit everyone

• Starpacks - exe’s - were added later on

• So one trick seems to be…

8

Pick a few conventions

• Convention ➔ Second Nature

• Second Nature ➔ More Time To Think !

• But… DNTO

• I want conventions to fit in nicely

• If natural, they’ll move down my spine

9

Rig

• It’s 1 Tcl script, defining 1 command

• A couple of - hopefully - useful procs

• Some - hopefully - useful conventions

• A bit of - hopefully - useful machinery

• DNTO - Rig’s purpose is to serve and help

10

Naming can kill you

• If it’s re-usable, it has to be named right

• Rig.tcl:

• file name == module name == namespace

• “Rig cmd ...” - no global var pollution

• a few other cmds, if not defined by you

• Rig is a “module” and supports lots of ‘em

11

Modules, i.e. “rigs”

• Rig will load file “Cool.tcl” as a module:
 namespace eval Cool {
 namespace export -clear {[a-z]*}
 namespace ensemble create
 source /path/to/Cool.tcl
 }

• Uses ensembles from Tcl 8.5:

! ! “Cool::abc 1 2 3” ➔ “Cool abc 1 2 3”

• To auto-load, call “Rig modules /path/to” once

12

Convenience

• If MyModule.tcl contains this:
 proc shout {msg} {
 puts [string toupper $msg]
 }

• Then I can use it anywhere in my app as:

! ! MyModule shout “Have a nice day!”

• Each module acts as a singleton object

• Lower-case procs are its “public methods”

13

Simplicity

• Don’t add more machinery than needed

• If you can’t remember it, then forget it!

• Rig.tcl is a single file:

• App: your stuff + “Rig.tcl” (+ “main.tcl”)

• All Rig “features” are in the “Rig” cmd

• Auto-loading & auto-downloading

14

main.tcl

• “main.tcl” defines your policies for Rig

• Here’s a simple but complete version:
 source ./Rig.tcl
 Rig modules ./rigcache ?http://<URL…>/?

 Rig event main.Init $argv
 Rig event main.Run
 if {![info exists Rig::exit]} {
 vwait Rig::exit
 }
 Rig event main.Done $Rig::exit
 exit $Rig::exit

15

http://modules.mavrig.org
http://modules.mavrig.org

Command Line

• hello1.tcl
 puts "Hello, world!"
 exit

• What happened?

• Rig auto-loads all *.tcl files next to it

• Rig defined a module called “hello1”

• But that’s cheating - hello1.tcl is stupid

16

Rig-aware cmd-line

• hello2.tcl:
 Rig hook main.Run {
 puts "Hello, world!"
 set ::Rig::exit 0
 }

• What happened after loading?

• “main.tcl” triggers “main.Run” event

• When hook is called, do a clean exit

17

Why bother?

• Same “main.tcl” can also be used for:

• Tk app, net server, net client, web app

• Or any mix of them...

• E.g. a socket for TkCon remote access

• visit website for several examples

• One less app choice to make up front

18

Web Apps - Part 1
• A web server in 6 lines of Tcl:
 Rig hook main.Run {
 Httpd start 8080 [namespace code Req]
 }
 proc Req {obj} {
 $obj respond "<h1>Hello, world!</h1>"
 }

• What happened?

• Rig auto-downloaded the Httpd rig

• That module implements web server core

19

Web Apps - Part 2

• A few modules, each only 100’s of LOC:

• Httpd: HTTP server, each req is an obj

• Render: Mason-like template engine

• Wikify: Text to HTML converter

• Minimal dependencies, you glue it together

• Any others? You bet. Yours. Be creative!

20

Turbo development

• Bonus - a major productivity boost:

• No more edit-run-debug cycles

• Keep editor + browser + app running

• Turbo development: edit-run-edit-run

• … will give a demo in the break …

• It’s all based on auto-reloading modules

21

Mavrig

• If Rig is a step in the right direction…

• …then Mavrig wants to take this further

• Mavrig = Modules And Views with Rig

• Good modularity leads to code re-use

• Views are about rich data structures

22

Modularity

• API - all calls are “module cmd ...”

• Coupling - Rig events are used as glue

• Naming - make sure things don’t clash

• Modularity takes effort up front

• Benefits later: test isolation, re-use, tools

23

Rig Collection

• I’m setting up a module / rig collection

• Public, even if nobody else wants it

• Contributors can get Subversion access

• Create private rigs, check-in to re-use

• A rig is not just to encapsulate new code

• Package wrappers, downloaders, builders

24

Why?

• I’m tired of seeing lots of great code
“snippets” which aren’t easily re-used

• All we need are a few conventions …

• … and a simple website to share modules

• Find good conventions for docs & tests

• Rig can be a catalyst - but even if no one
else wants it, Rig scratches my own itch.

25

How?

• All it takes to auto-load your modules is:

! ! “Rig modules ./rigcache”

• Add an extra arg and it can auto-download:

! ! “Rig ... http://contrib.mavrig.org/”

• Downloaded only on first use, then it’s local

• Module inter-dependencies work fine

26

http://modules.mavrig.org
http://modules.mavrig.org

When?

• Rig, docs, and a few modules on-line now

• Am calling this “Rig 0.x” so far…

• Currently using Rig for Mavrig myself

• Various Mavrig modules “in progress”

• Play with it, pull on it, find out the limits

• If it sucks, let me know how / what to fix

27

Thank you

• Website for (and built with) Rig and Mavrig:

! ! http://mavrig.org/

(high-availability server in Nürnberg)

• Let’s make it convenient to re-use Tcl stuff

! ! jcw@equi4.com

http://mavrig.org
http://mavrig.org
mailto:jcw@equi4.com
mailto:jcw@equi4.com

