UCOME
Your Content Management ...
in Tcl

o

Mandriva - Ouvert, simple et innovant
Arnaud Laprévote — directeur des projets de recherche
arnaud.laprevote@mandriva.com

il i
2 Man driva

Content

* History

e Structure

« How a file Is processed
* Debugging

e Conclusion

* Free&ALter Soft : services around free /| open source
software for industry 12/1996
 Bought Linbox in 2001
* => Linbox FAS
* Switch from pure service to software edition / service
* Linbox Rescue Server : a computer management
solution : imaging, file backup, inventory, software
deployment, keyboard/display control, integrated in a
single web interface => used in Prime Ministry
services, Ministére de I'Intérieur, Airbus for A380 flight
test, préfecture, industry,
* Linbox Directory Server : an open source AD Kkiller.
* Linbox FAS bought by Mandriva in 2007

2 "'Mandriva

Linbox FAS & TCL

« 1997 : free software distribution for Solaris (then IRIX
and HPUX)
* Main customers : Renault & MBDA (1998-2007)
* Installation GUI + generator of environment variables
in tclitk
» 1998 : tcl cgi program for ticket management in
Thomcast
« 1998-99 : tcl cgi program (fastcgi) to manage the time
spent on projects for SNCF
* tcl is the main company programming language
* but it is not an obligation : we are heavy users of
scripting language (perl, php, python)
* 1999 : EQUAL project — infomobility

N Mandriva

Serveur RrOolLl Bus Modem DARC - (high speed RDS)
Récupération | ™ [—— — I—
d’informations e —_—

— RTC _

]
.
.
3 33 23
. g
.

Site Gouv.

ﬂ Radio Cool

Site Info Rég. | Site Info Nat. (+RrOOLI Bus sur DARC)

Acceg intranet
ou internet/a RrOoLI Bus

Gestion contenlu Site Info Culture

Infotf de
voire
site.

Site web
http://www.xyz.fr/
rrooll _bus

Consultation
des informations
vues dans le bus

sur le site internet
de la société de bus

Gérant RrOoLI Bus
Choix / ajout de pages

Architecture RrOoLI| Bus

X "Mandriva

 Presentation of informations in buses

* Pb : content creation cost
* take the content where it is : on internet !
* reshape the content to adapt it to a “television”
display
e System :
* content creation
* static content management (non internet)
* transmission to display system(s)
* display

* content aspiration and transformation with
NewsClipper in perl

* static content management with a perl cgi (webfm) +
cgis in tcl (choice of pages and sources, set up, ...)

* control of transmission via a tcl script

* reception on the terminal and display with ad-hoc
scripts : content is totally static

* A lot of heterogeneous elements => difficult to

maintain

’ L

2 "Mandriva

Linbox web site

* At the same time, | begin to work on Linbox FAS web
site content management system :
* | start from txt2ml : a script that transform text (a la
wiki) in html
* then | add what is required to manage menus and also
have an on-line edition possibility

Enthrone — Ecim

* Follow up of Equal project is the European Enthrone
project

| am said : “just keep the previous code, and do
small adaptations”

* Obviously, | take the occasion to create a full content
management system in tcl

(X *Mandriva

Constraints & pro

 Fully file based

* Possibility to easily change and adapt the look

« Management of rights and “properties”

* Possibility to create an automatic rolling display
 Multi-language

 Integrated debugging and logging solution

* iIndependent of server and technology (cgi, tclhttpd,
apache rivet, websh, ...)

 Management of menu by using directory structure
and properties

* Wiki like but with structured presentation of
Informations (except no history management)

 Experimental tcl only connected ftpd server for
direct file management (taking into account the
rights)

(B*Mandriva

File organisation of a site

 Jany : directory of web site files

 Jany/.manal.val : properties of lany

 Jany/toto.txt : a file that will be displayed

 Janyl.manaltoto.txt : properties of [any/toto.txt

» /[cache : cache of all files created

 J|cache/lcompl/any/toto.txt&&& : html file obtained
from Jany/toto.txt. The &&& means here that no
values where exported with the file, and no cooky are
set or used.

 [session : session files

 [template : directory in which all templates are
stored.

* Jcomp : directory in which file storing the action for
each parts of a file are stored

* % e

How 1t works

 Ucome is a transformation engine
* You have :

* an original file (in its original format)

* an action

* a target format (displayable, pdf, original, ...)
 Transformations are done till getting something
* Every operation is cached

Jany/programmer

* directory “${ROOT}any/Programmer”
* determination that it is a dir
* calling dir::new_type
- answer is txt (it looks if there is an index.xxx in the
directory, here it finds index.txt,

* calling dir::2txt
- the file index.txt is loaded and cached
e text file
* calling txt::new_type
- answer is comp (composite file)

* txt::2comp
- the text file is transformed in html (a la wiki)

e comp
* calling comp::2newtype
- answer is fashtml

lanv/programmer

* calling comp::2fashtml
- | will come back on this function after

e fashtml

* calling fashtml::new_type
- answer is htmf

* calling fashtml::2htmf
- all url are transformed depending if they are relative,
absolute, some keywords (such as fas: are changed
into what it should be depending on the url)

o htmf
* calling htmf::new_type
-answer is “” : it is a “final” filetype
* calling htmf::display
- using the function to send back the content depending
on the “engine” used (cgi, tclhttpd, rivet, websh)

b

What about actions ?

* file=/anyl/index.txt action=copy
« directory “${ROOT}anylindex.txt”
* determination that it is a txt
o text file
* calling txt::new_type
*answer IS ... COpy

* txt::2copy
- function defined for everybody in tcl/fas_basic_proc.tcl

* in variable ::STANDARD PROCEDURES
* return “”
* copy

* copy::2new_type
- return “final” + variable done=1 (action done)

* copy::2final : the copy is done and a message is
created (copy done or not)

2 Mandriva

Action (take 2

* once the copy done ... restart a full display with
file=lany message="xxxx" action=view (call
display_file)

Mandriva

* Just using a pipe is not flexible enough
 Each element of a page may be considered as an
element coming from a transformation
* For example the menu :
* file : Jany/programmer
* action: menu
* target: nocomp

if (document.layers) { document.gee

Screenshots
User
Webmaster
Programmer
Design
Template library
Design of edit form
Ideas for future
To do

Source code
Buggs

Debug file Main log file

l_ll_lbD)(logiciels libres pour les professionnels |5e-arch GO | e

Screenshots

User Webmaster Programmer Todo Sg::;e Buggs

hots

n
5

+ User

aster

H

+ Programmer

+» Design

+ Template library

+ Design of edit form

« ldeas for future

+ To do

« Source code

+ Buggs

Home> Programmer

Design of UCome - Your Content Management

1. General remark

Tclis a "glue” language. A language that does not try to do everything, but allows to "glue” different programs, different libraries
in & single coherent application, that may have a graphical interface. This web application tryes to extend this concept to the
management of data in a web site. it will not do everything. No. It will allow to "glue” all intelligent programs that exist to publish
existing data on the web as easily as possible. It will allow you to work as little code as possible to jump in the application. Once
you jumped in, you will benefit of all the other modules that exist. For example, as soon as you are able to output html, you will
benefit of the automatic creation of the menu depending of the place of the file in the directories.

What it means today is that, Free&Alter Soft deals with some filetype and some actions. Mow, there is the rest : we do not
provide a tex filetype, a gnuplot filetype, an xml filetype, a sgml filetype, an autocad, a dxf, a xfig, a tiff, a ... filetype. Because you
use more these applications than we do, then you are much more able to have them fitin this environment. And if there is a real
integration problem, it means we missed something and we will try to correct that.

UCome tryes to be like Tel (which is in my mind a very ambitious goal) :
+ small,

+ very quickly efficient,

T

R Mandriva

* You define what to display in a special file :
* 3{ROOT}/comp/${action}.form or
${type}.${action}.form or
${target}.${type}.${action}.form
* ie ${ROOT}complview.form

global.template standard.template

global.title "Block definitions for the template for looking
at a text file"

global.title.fr "Définition des blocs pour le canevas
permettant de visualiser un fichier texte"

title.type file

title.cgi_uservar.action title

menu.type file

menu.cgi_uservar.action menu

content.type html

allow.type file

allow.cgi_uservar.action show_action list

allow.cgi_uservar.from view

 When doing comp::2fashtml :
* template file is downloaded (property templatedir and
file given in previous view.form) => standard.template
* for each section defined in view.form which is a file,
the action is done with the file name
* at the end, all html is integrated in the single template
file to obtain the final file

L

Of*Mandriva =

» fas_debug.tcl
Enable (0) or Disable debug (0)
set DEBUG 1
Useful on a big crash to determine where fas_view crashes
set DEBUG FILE 1
Show debug on html pages
set DEBUG_SHOW 1
Mandatory - global variables in which all messages are accumulated
set DEBUG_STRING ""
At 0 every possible message are enabled for all namespace
set DEBUG ALL O
At 0 debug messages of function in no namespace are displayed
set DEBUG_MAIN 1
Enable debug message for a given namespace
If a LOCAL_DEBUG_COLOR is defined then messages are in this color
for this namespace
catch {set atemt::LOCAL DEBUG O }
catch {set fas depend::LOCAL DEBUG 0 }
catch {set fas depend::LOCAL DEBUG _COLOR "#00OFFFF" }
catch {set fas session::LOCAL DEBUG 1}
catch {set fas_ name_and_dir::LOCAL DEBUG 0}

catch {set binary::LOCAL DEBUG 1}

2 "Mandriva

* tmp/ucome/ucome_1557-4171715781.dbg

fas_basic_proc::fas_get_value name => file args => -noe -nos -default
liconslok.gif
fas_view.tcl - file -> Jany/bug.txt
fas_basic_proc::fas_get_value name => action args => -noe -nos -default
view
fas_view.tcl - action -> edit
----------------- displaying _cgi_uservar --------------------
ok.x ->9
file -> Jany/bug.txt
ok.y -> 19
ok->1
action -> edit
content -> All bugs (there are too many)

R Mandriva

 [tmp/ucome/ucome_1557-4171715781.dbhg.log

fas_session::open_session - fas_session::open_session -1-0 -
reading existing session file : /var/lib/lucomel/session/1212224229 15502_368481
cache_and_display - Calling txt::2edit on /any/bug.txt
cache_and_display - Calling dir::2edit_form on Jany
atemt::read_file_template_or_cache - Using template
[template/linbox5/dir.template
cache - Caching
Icacheledit_form/any&user=&&{action+edit_form}+{message+{Succe
ssful+writing+of+++any+bug.txt}}
cache_and_display - Calling edit_form::2comp on /any
cache - Caching /Icache/lcomp/any&user=&&{action+edit_form}+{message-
{Successful+writing+of+++any+bug.txt}}
cache_and_display - Calling comp::2fashtml on /any
comp::2fashtml - Using form /compl/edit_form.form
comp::2fashtml - Processing section path of type file
comp::file::get_html - Processing file /any
comp::file::get_html - - action <= admin_path
comp::file::get_html - - hew_type_option

2 "Mandriva

Conclusion

* Opening

« Community ?

 To many bugs (to many actions, filetypes, cases,
backends => websh sessions do not work ...)

 Changing the caching solution !!! everything is
written In files, each step => to slow (but very
practical for debugging !)

» Creating a good automatic testing solutions (for all
actions, filetypes, ...)

SO many other things to do ...

Mandriva Linux
Ouvert, simple et innovant

