
Tablelist in KDE Look Csaba Nemethi Page 1 of 15

Tablelist in KDE Look

by

Csaba Nemethi

csaba.nemethi@t-online.de
http://www.nemethi.de

INFOSYS GmbH, Unterhaching

csaba.nemethi@infosys-online.de
http://www.infosys-online.de

Contents

1. A Quick Tablelist Overview
2. Tablelist Widgets in Classical Look
3. Tablelist Widgets in Tile Look
4. The TileQt Extension for the KDE Desktop
5. Tablelist Widgets in KDE Look

mailto:csaba.nemethi@t-online.de
http://www.infosys-online.de/
mailto:csaba.nemethi@infosys-online.de
http://www.nemethi.de/

Tablelist in KDE Look Csaba Nemethi Page 2 of 15

1. A Quick Tablelist Overview

The Tablelist package (see http://www.nemethi.de) contains:

 the implementation of the tablelist mega-widget (in pure Tcl/Tk code), including a general
utility module for mega-widgets;

 seven demo scripts that create tablelist widgets in classical look;
 eight demo-scripts that create tablelist widgets in tile look (seven of them being tile-based

counterparts of the above);
 a comprehensive Tablelist Programmer's Guide in HTML format;
 detailed reference pages in HTML format.

A tablelist widget is a multi-column listbox, supporting a large number of options and widget
subcommands. Here are just a few of them:

 Static- and dynamic-width columns.
 The columns are, per default, resizable.
 Interactive switching between static and dynamic column widths via Button-3 and
Shift-Button-3.

 Supported column alignments: left, right, and center.
 The font, colors, text, and other options can be set individually for the columns (and their

titles), rows, and cells.
 Support for column separators and row stripes.
 Support for hidden columns and rows.
 Newline characters in the elements give rise to multi-line cells.
 Support for embedded images in the cells and header labels, as well as for embedded

windows in the cells.
 Built-in sort capability, with the aid of the sort, sortbycolumn, and
sortbycolumnlist subcommands (the latter does multi-column sorting).

 Support for interactive (multi-column) sorting via Button-1 (and Shift-Button-1).
 Besides the -selectmode option (with the values single, browse, multiple, and
extended) there is also a -selecttype option, with the values row and cell.

 Support for moving a column or row programmatically or interactively (with the left mouse
button).

 Support for interactive editing with a great variety of widgets from the Tk core and the
packages tile, BWidget, Iwidgets, combobox, and Mentry.

http://www.nemethi.de/

Tablelist in KDE Look Csaba Nemethi Page 3 of 15

2. Tablelist Widgets in Classical Look

Our first example displays the tablelist widget subcommands in a tablelist with single- and multi-
line cells.

The code is quite simple. When populating the widget, we insert newline characters into the
strings that are to be displayed in two lines:

package require Tablelist

#
The following optional command makes the use of a
text widget as edit window much more user-friendly:
#
package require Wcb

wm title . "Tablelist Widget Subcommands"

#
Add some entries to the Tk option database
#
set dirName [file dirname [info script]]
source [file join $dirName option.tcl]

#
Create a vertically scrolled tablelist widget with 4
dynamic-width columns and interactive sort capability
#
set tbl .tbl
set vsb .vsb
tablelist::tablelist $tbl \
 -columns {0 Subcommand left

Tablelist in KDE Look Csaba Nemethi Page 4 of 15

 0 Variants center
 0 Arguments left
 0 Comment center} \
 -font "Helvetica -10" -height 20 -setgrid no -showseparators yes \
 -titlecolumns 1 -protecttitlecolumns yes \
 -yscrollcommand [list $vsb set] -width 0
if {[$tbl cget -selectborderwidth] == 0} {
 $tbl configure -spacing 1
}
$tbl columnconfigure 0 -font "Courier -12"
$tbl columnconfigure 2 -font "Courier -12"
$tbl columnconfigure 3 -editable yes -editwindow text
scrollbar $vsb -orient vertical -command [list $tbl yview]

#
Populate the tablelist widget
#
$tbl insert end \
 [list "activate" 1 "index"] \
 [list "activatecell" 1 "cellIndex"] \
 [list "attrib" 2 "?name?\nname value name value ..." "query\nchange"] \

 . . .

 [list "insertcolumnlist" 1 "columnIndex {width title ?alignment? \\
 width title ?alignment? ...}"] \

 . . .

set btn [button .btn -text "Close" -command exit]

. . .

Our second example is a slightly modified version of a demo script contained in the Tablelist
distribution. It creates a tablelist widget whose items correspond to the Tk library scripts. The
size of each file (in bytes) is not only displayed as a number, but is also illustrated with the aid of a
frame with red background, created as a child of an embedded frame with ivory background. The
files can be viewed by clicking on the corresponding embedded button widgets.

First, we create and populate the tablelist widget:

Tablelist in KDE Look Csaba Nemethi Page 5 of 15

package require Tablelist

wm title . "Tk Library Scripts"

#
Add some entries to the Tk option database
#
set dirName [file dirname [info script]]
source [file join $dirName option.tcl]

#
Create an image to be displayed in buttons embedded in a tablelist widget
#
set openImg [image create photo -file [file join $dirName open.gif]]

#
Create a vertically scrolled tablelist widget with 5
dynamic-width columns and interactive sort capability
#
set tbl .tbl
set vsb .vsb
tablelist::tablelist $tbl \
 -columns {0 "File Name" left
 0 "Bar Chart" center
 0 "File Size" right
 0 "View" center
 0 "Seen" center} \
 -font "Helvetica -12" -setgrid no -yscrollcommand [list $vsb set] -width 0
if {[$tbl cget -selectborderwidth] == 0} {
 $tbl configure -spacing 1
}
$tbl columnconfigure 0 -name fileName
$tbl columnconfigure 1 -formatcommand emptyStr -sortmode integer
$tbl columnconfigure 2 -name fileSize -sortmode integer
$tbl columnconfigure 4 -name seen
scrollbar $vsb -orient vertical -command [list $tbl yview]

proc emptyStr val { return "" }

#
Populate the tablelist widget
#
cd $tk_library
set maxFileSize 0
foreach fileName [lsort [glob *.tcl]] {
 set fileSize [file size $fileName]
 $tbl insert end [list $fileName $fileSize $fileSize "" no]

 if {$fileSize > $maxFileSize} {
 set maxFileSize $fileSize
 }
}

In order to create the embedded windows, we have to implement the creation scripts for them:

#--
createFrame
#
Creates a frame widget w to be embedded into the specified cell of the
tablelist widget tbl, as well as a child frame representing the size of the
file whose name is diplayed in the first column of the cell's row.
#--

Tablelist in KDE Look Csaba Nemethi Page 6 of 15

proc createFrame {tbl row col w} {

 . . .

}

#--
createButton
#
Creates a button widget w to be embedded into the specified cell of the
tablelist widget tbl.
#--
proc createButton {tbl row col w} {
 set key [$tbl getkeys $row]
 button $w -image $::openImg -highlightthickness 0 -takefocus 0 \
 -command [list viewFile $tbl $key]
}

#--
viewFile
#
Displays the contents of the file whose name is contained in the row with the
given key of the tablelist widget tbl.
#--
proc viewFile {tbl key} {
 set top .top$key
 if {[winfo exists $top]} {
 raise $top
 return ""
 }

 toplevel $top
 set fileName [$tbl cellcget k$key,fileName -text]
 wm title $top "File \"$fileName\""

 #
 # Create a vertically scrolled text widget as a child of the toplevel
 #
 set txt $top.txt
 set vsb $top.vsb
 text $txt -font "Courier -12" -setgrid yes -yscrollcommand [list $vsb set]
 scrollbar $vsb -orient vertical -command [list $txt yview]

 #
 # Insert the file's contents into the text widget
 #
 set chan [open $fileName]
 $txt insert end [read $chan]
 close $chan

 . . .

 #
 # Mark the file as seen
 #
 $tbl rowconfigure k$key -font "Helvetica -12 bold"
 $tbl cellconfigure k$key,seen -text yes
}

Having implemented the creation scripts for the frames and buttons, we can now use the
cellconfigure subcommand to create these widgets as embedded windows:

Tablelist in KDE Look Csaba Nemethi Page 7 of 15

#
Create embedded windows in the columns no. 1 and 3
#
set rowCount [$tbl size]
for {set row 0} {$row < $rowCount} {incr row} {
 $tbl cellconfigure $row,1 -window createFrame
 $tbl cellconfigure $row,3 -window createButton
}

Now let's take a look at the file option.tcl, which is sourced into both example scripts
above:

#
Get the current windowing system ("x11", "win32", or
"aqua") and add some entries to the Tk option database
#
if {[tk windowingsystem] eq "x11"} {
 option add *Font "Helvetica -12"
 option add *selectBackground #447bcd
 option add *selectForeground white
 option add *Text.background white
 option add *Text.foreground black
}
option add *Tablelist.background gray98
option add *Tablelist.foreground black
option add *Tablelist.stripeBackground #e0e8f0
option add *Tablelist.activeStyle frame
option add *Tablelist.setFocus yes
option add *Tablelist.setGrid yes
option add *Tablelist.movableColumns yes
option add *Tablelist.labelCommand tablelist::sortByColumn
option add *Tablelist.labelCommand2 tablelist::addToSortColumns

The main goal of the option database settings contained in this file is to improve the overall
appearance and behavior of the widgets used in both example scripts.

The *Font option is specified with a capital "F", because we want to set both the -font and
-labelfont tablelist options, both belonging to the database class Font. We specify this
option as well as some others not only for tablelist widgets, because they are common widget
options, whose values should be the same for all widgets if not explicitly overridden in the
application.

The procedures specified in the last two option database settings enable the interactive multi-
column sorting via Button-1 and Shift-Button-1; they invoke the sortbycolumn and
sortbycolumnlist subcommands, mentioned in Section 1.

Tablelist in KDE Look Csaba Nemethi Page 8 of 15

3. Tablelist Widgets in Tile Look

Here is the tile-based version of our first example script:

package require Tablelist_tile

#
The following optional command makes the use of a
text widget as edit window much more user-friendly:
#
package require Wcb

wm title . "Tablelist Widget Subcommands"

#
Add some entries to the Tk option database
#
set dirName [file dirname [info script]]
source [file join $dirName option_tile.tcl]

#
Work around the improper appearance of the tile scrollbars in the aqua theme
#
if {$tile::currentTheme eq "aqua"} {
 interp alias {} ttk::scrollbar {} ::scrollbar
}

Improve the window's appearance by using a tile frame as a
container for the other widgets; set -padding -2 to work
around a tile bug in the themes winnative and xpnative

set f [ttk::frame .f -padding -2]

#
Create a vertically scrolled tablelist widget with 4
dynamic-width columns and interactive sort capability
#
set tbl $f.tbl
set vsb $f.vsb
tablelist::tablelist $tbl \
 -columns {0 Subcommand left
 0 Variants center
 0 Arguments left
 0 Comment center} \
 -font "Helvetica -10" -height 20 -setgrid no -showseparators yes \
 -titlecolumns 1 -protecttitlecolumns yes \
 -yscrollcommand [list $vsb set] -width 0
if {[$tbl cget -selectborderwidth] == 0} {
 $tbl configure -spacing 1
}
$tbl columnconfigure 0 -font "Courier -12"
$tbl columnconfigure 2 -font "Courier -12"
$tbl columnconfigure 3 -editable yes -editwindow text
ttk::scrollbar $vsb -orient vertical -command [list $tbl yview]

#
Populate the tablelist widget
#
$tbl insert end \
 [list "activate" 1 "index"] \

Tablelist in KDE Look Csaba Nemethi Page 9 of 15

 [list "activatecell" 1 "cellIndex"] \
 [list "attrib" 2 "?name?\nname value name value ..." "query\nchange"] \

 . . .

 [list "insertcolumnlist" 1 "columnIndex {width title ?alignment? \\
 width title ?alignment? ...}"] \

 . . .

set btn [ttk::button $f.btn -text "Close" -command exit]

. . .

In the file option_tile.tcl, which is sourced into our example script, the theme is set to
alt. The resulting window has a nice theme-specific appearance:

The tile-based version of our second example script contains similar changes. In addition, it
displays the tile library scripts instead of the Tk ones. Here is a screenshot of the resulting
window:

Tablelist in KDE Look Csaba Nemethi Page 10 of 15

The tile-based versions of both example scripts make use of the option database settings contained
in the file option_tile.tcl:

#
Get the current windowing system ("x11", "win32",
or "aqua") and set the theme if needed
#
if {[tk windowingsystem] eq "x11"} {
 lappend auto_path ~/tcltk/lib ;# contains all non-built-in themes
 tile::setTheme alt
}

#
Populate the array tablelist::themeDefaults
and add some entries to the Tk option database
#
tablelist::setThemeDefaults
if {$tile::currentTheme ne "aqua"} {
 option add *selectBackground $tablelist::themeDefaults(-selectbackground)
 option add *selectForeground $tablelist::themeDefaults(-selectforeground)
 option add *selectBorderWidth $tablelist::themeDefaults(-selectborderwidth)
 option add *Text.background $tablelist::themeDefaults(-background)
 option add *Text.foreground $tablelist::themeDefaults(-foreground)
}
if {$tablelist::themeDefaults(-stripebackground) eq ""} {
 option add *Tablelist.background gray98
 option add *Tablelist.foreground black
 option add *Tablelist.stripeBackground #e0e8f0
}
option add *Tablelist.activeStyle frame
option add *Tablelist.setFocus yes
option add *Tablelist.setGrid yes
option add *Tablelist.movableColumns yes
option add *Tablelist.labelCommand tablelist::sortByColumn
option add *Tablelist.labelCommand2 tablelist::addToSortColumns

The procedure tablelist::setThemeDefaults populates the array
tablelist::themeDefaults with the theme-specific default values of a series of Tablelist
configuration options. This procedure is invoked by the Tablelist code automatically when the
first tablelist widget is createad or a <<ThemeChanged>> virtual event is received by a tablelist
widget. In the code above we call it explicitly and use the values written by it into the array

Tablelist in KDE Look Csaba Nemethi Page 11 of 15

tablelist::themeDefaults for some common option database settings, in order to make
sure that classical Tk widgets, e.g., text, will have a theme-specific appearance, just like the tile
widgets. We exclude the aqua theme, because on Mac OS X Aqua the default values of the
-selectbackground and -selectforeground options for tablelist widgets are different
from those for Tk core widgets.

Notice that we didn't remove the three lines containing the option database settings for the tablelist
background, foreground, and stripeBackground options. The reason is that we want
to have stripes in our tablelist widgets, but in most themes the default value of the
-stripebackground option is an empty string. For this case we define reasonably looking
values for both that alternate color and the ones used for the background and foreground of the
tablelist widgets. Currently the only theme providing a nonempty default value for the
-stripebackground option is tileqt.

4. The TileQt Extension for the KDE Desktop

Instead of alt we can take any other available theme. The following simple script lists all of
them:

package require tile

#
Print the list of the available themes; the non-built-in
ones are located in the directory ~/tcltk/lib
#
lappend auto_path ~/tcltk/lib
eval [package unknown] Tcl [package provide Tcl]
puts "Available themes: [lsort -dictionary [tile::availableThemes]]"

exit

On my Linux notebook I get the the following output:

Available themes: alt Aquativo blue clam classic default keramik kroc plastik
sriv srivlg step tileqt winxpblue

By experimenting with various widgets using these themes, it quickly turns out that tileqt is the
only theme that gives rise to a GUI appearance that fits well into a KDE environment. This theme,
developed by Georgios Petasis, makes use of the Qt class library to draw the tile widgets, just like
the KDE components. The resulting widgets have both the layouts and colors corresponding to the
current Qt style and KDE color scheme. The download location of the excellent TileQt extension
is:

http://www.ellogon.org/petasis/index.php?option=com_content&task=view&id=24&Itemid=40

Although the Qt class library is a multi-platform toolkit, TileQt was explicitly developed for the
KDE system. It makes use of the Inter-Client Communication Conventions (ICCC) protocol to
communicate with KDE. When loaded into an interpreter, TileQt creates an invisible QWidget
object and sets the "KDE_DESKTOP_WINDOW" property on it, to make sure that it will be
notified about Qt style and color scheme changes (which are usually done with the aid of the KDE
Control Center). Whenever such a change takes place, KDE sends a ClientMessage event to
this window, having the message_type member set to the atom corresponding to the

http://www.ellogon.org/petasis/index.php?option=com_content&task=view&id=24&Itemid=40

Tablelist in KDE Look Csaba Nemethi Page 12 of 15

"KIPC_COMM_ATOM" property. TileQt receives this event with the aid of a Tk generic handler
registered for the interpreter in question, and performs the necessary actions to redraw the tile
widgets. As a result, the widget layouts and colors are adapted to the new style and color scheme,
respectively.

Here is a screenshot displaying the window produced by a slightly modified version of the well-
known tile distribution script demo.tcl, where the theme is set to tileqt and both the style
and color scheme have the value Plastik (which is the default in newer KDE versions):

Tablelist in KDE Look Csaba Nemethi Page 13 of 15

5. Tablelist Widgets in KDE Look

The two pictures below are screenshots displaying the windows created by the two demo scripts
discussed in the preceding sections, where the theme is set to tileqt and both the Qt style and
color scheme have the value Plastik:

By changing the Qt style and/or the color scheme, the appearance of the above windows will
change accordingly. This is achieved by using some commands provided by the TileQt extension
to adapt the default values of a series of configuration options to the currently used style and color
scheme, and by a lot of additional work put into Tablelist to cope with the many special cases
where the means provided by TileQt are not sufficient for all purposes. The rest of the paper
describes the main aspects of the implementation of Tablelist's support for the tileqt theme.

Tablelist in KDE Look Csaba Nemethi Page 14 of 15

As already mentioned in Section 3, Tablelist invokes the procedure
tablelist::setThemeDefaults when the first tablelist widget is createad or a
<<ThemeChanged>> virtual event is received by a tablelist widget. This virtual event is
generated by the tile widget engine whenever the theme is set via style theme use (which
in turn is invoked by tile::setTheme). However, if the current theme is tileqt and the Qt
style or KDE color scheme is changed then tile doesn't send this event. As described in the
preceding section, the TileQt extension is notified of such changes and handles them by redrawing
the tile widgets. Besides doing this, TileQt also generates a <<ThemeChanged>> virtual event,
which in turn will fire an invocation of the tablelist::setThemeDefaults procedure.

This procedure populates the array tablelist::themeDefaults with theme-specific
default values of the following Tablelist configuration options: -background, -foreground,
-disabledforeground, -stripebackground, -selectbackground,
-selectforeground, -selectborderwidth, -font, -labelbackground,
-labelforeground, -labelfont, -labelborderwidth, -labelpady,
-arrowcolor, and -arrowstyle. In addition, it sets some other array elements to theme-
specific default values of the label background and foreground colors in disabled, active,
and pressed states. The label colors are needed for handling sort arrows and images with
transparent background placed into the column labels.

When a tablelist widget receives the <<ThemeChanged>> virtual event, Tablelist invokes the
procedure tablelist::setThemeDefaults to retrieve the new default values of the above
configuration options, and then reconfigures the widget by updating those options that were not set
explicitly to values different from the corresponding defaults.

If the current theme is tileqt then the default values mentioned above are not only theme-
specific, but depend also on the Qt style and KDE color scheme. Tablelist retrieves most default
color values by invoking the TileQt command
tile::theme::tileqt::currentThemeColour, which accepts various arguments
specifying which color is meant. While this works as expected for most colors, there are quite a
few styles (like "Baghira", "BlueCurve", "HighColor Classic", "Keramik", "Light Style, 3rd
revision", "Phase", "Plastik", "Platinum", "QtCurve", "ThinKeramik", etc.) in which the
background color of the labels in normal and/or pressed states cannot be retrieved by calling
any TileQt command. For these styles, Tablelist uses empirically measured values, which depend
not only on the Qt style but also on the KDE color scheme. In some other styles (like "Acqua",
"KDE_XP", "Lipstik", "Marble", "RISC OS", "System-Series", "System++", etc.), the label colors
are independent of the color scheme, but, again, Tablelist can only use empirically measured
values for them. Paul Obermeier's excellent poImgview application (see http://www.poSoft.de)
helped me a lot getting these colors, which in many cases are just median pixel values.

The default value of the -stripebackground option cannot be retrieved by calling any TileQt
command either, but, fortunately, KDE saves this color in a kdeglobals configuration file, and
Tablelist reads it from that file, which is located in one of the standard KDE directories.

Finally, determining the default values of the -arrowcolor and -arrowstyle options,
which, again, depend on the currently used Qt style, was made by looking at the sort arrows
displayed by standard KDE applications in various styles. Georgios Petasis used the same method
to determine the scrollbar layouts, which are style-specific, too.

From all the above it follows that it is nearly impossible to cope with the great variety of available
Qt styles and KDE color schemes. Nevertheless, Tablelist supports all the built-in ones, along

http://www.poSoft.de/

Tablelist in KDE Look Csaba Nemethi Page 15 of 15

with a number of additional styles and color schemes. The following code snippet, taken from the
Tablelist distribution file tablelistThemes.tcl, lists the currently supported Qt styles and
KDE color schemes:

#--
tablelist::tileqtTheme
#
Tested with the following Qt styles:
#
Acqua KDE_XP Motif Plus SGI
B3/KDE Keramik MS Windows 9x System-Series
Baghira Light Style, 2nd revision Phase System++
CDE Light Style, 3rd revision Plastik ThinKeramik
HighColor Classic Lipstik Platinum
HighContrast Marble QtCurve
KDE Classic Motif RISC OS
#
Supported color schemes:
#
Aqua Blue Ice (FreddyK) Point Reyes Green
Aqua Graphite KDE 1 Pumpkin
Atlas Green KDE 2 Redmond 2000
BeOS Keramik Redmond 95
Blue Slate Keramik Emerald Redmond XP
CDE Keramik White Solaris
Dark Blue Lipstik Noble Storm
Desert Red Lipstik Standard SuSE, old & new
Digital CDE Lipstik White SUSE-kdm
EveX Media Peach System
High Contrast Black Text Next Thin Keramik, old & new
High Contrast Yellow on Blue Pale Gray Thin Keramik II
High Contrast White Text Plastik
#--

	by
	Csaba Nemethi
	INFOSYS GmbH, Unterhaching

	Contents
	1. A Quick Tablelist Overview
	2. Tablelist Widgets in Classical Look
	3. Tablelist Widgets in Tile Look
	4. The TileQt Extension for the KDE Desktop
	5. Tablelist Widgets in KDE Look

