
Filling a Gap in Tk with Tablelist
by

Csaba Nemethi

csaba.nemethi@t-online.de

Contents

1 Looking for a Multi-Column Listbox... 2

1.1 The requirements.. 2
1.2 The candidates.. 2

2 Tablelist Overview ... 3

2.1 What is Tablelist?... 3
2.2 How to get it? ... 4
2.3 How to install it? .. 4
2.4 How to use it? .. 4

3 Tablelist Examples ... 6

3.1 A tablelist widget displaying configuration options .. 6
3.2 A simple widget browser based on a tablelist.. 10
3.3 Improving the look & feel of a tablelist widget ... 17

4 Tablelist Quick Reference ... 19

4.1 The tablelist::tablelist command.. 19
4.2 The tablelist::sortByColumn command .. 21

2 Filling a Gap in Tk with Tablelist

1 Looking for a Multi-Column Listbox

1.1 The requirements

Every really professional toolkit for building graphical user interfaces should contain a multi-
column listbox widget fulfilling the following conditions:

• It should be easy to install and use;
• It should behave just like a Tk core listbox;
• It should support left- and right-aligned as well as centered columns;
• It should have support for both static- and dynamic-width columns;
• A single mouse click should suffice to make the width of a column dynamic, i.e., just

large enough to hold all the elements in the column, including the header;
• The columns should be, per default, resizable (with the aid of the left mouse button);
• It should have built-in support for sorting the items both globally and by an arbitrary

column;
• The sort operation should preserve the selection information and the active item;
• When sorting the items by a column, the sorting order should, per default, be visualized

with the aid of an arrow placed into the corresponding column label;
• It should support programmatic updating of row and cell contents;
• It should be possible to configure the colors and fonts of the columns, rows, cells, and

header labels individually;
• It should provide support for inserting images into the cells and header labels;
• It should support stretching of an arbitrary set of columns in order to eliminate the blank

space that might appear at the right of the widget;
• It should be possible to define callbacks for the activate, selection set, and

selection clear commands;
• It should support vertical separators and horizontal stripes, to improve the readability of

the items.

1.2 The candidates

Unfortunately, the Tk core doesn’t include a multi-column listbox. The well-known table
widget of the TkTable compiled extension by Jeffrey Hobbs behaves more like a spreadsheet
than like a listbox, and fails to fulfil several of the above conditions. Bryan Oakley’s mclistbox
is based on normal listbox widgets, which prevents it from supporting right-aligned or centered
columns as well as images. The BLT compiled extension by George A. Hewlett contains a
hiertable widget, which has many of the above features, but still misses some of them and is not
quite easy to install and use. Also the rtl_mlistbox widget of the Runtime Library by
Patzschke + Rasp Software AG and the listcontrol component of the mkWidgets package by
Michael Kraus fail to fulfil several of the conditions mentioned above.

These facts determined me nearly two years ago to develop a new multi-column listbox, called
tablelist. It has all of the above features and is really very easy to install and use, as confirmed
in e-mails received from dozens of satisfied users. Many of them have also given me valuable
suggestions for improving the look & feel, behavior, and performance of the widget. This
feedback has been the main motivation for my efforts aimed to make this widget a professional
Tk extension, useful to everyone looking for a versatile and user-friendly multi-column listbox.

Filling a Gap in Tk with Tablelist 3

2 Tablelist Overview

This chapter is taken from the Tablelist Programmer’s Guide, which is part of the detailed
documentation belonging to the distribution of the current version 2.5 of the Tablelist package.

2.1 What is Tablelist?

Tablelist is a library package for Tcl/Tk version 8.0 or higher, written in pure Tcl/Tk code. It
contains:

• the implementation of the tablelist mega-widget, including a general utility module for
mega-widgets;

• a demo script containing a useful procedure that displays the configuration options of an
arbitrary widget in a tablelist;

• a second demo script, containing a simple widget browser based on a tablelist;
• a third demo script, showing several ways to improve the appearance of a tablelist

widget;
• this tutorial;
• reference pages in HTML format.

A tablelist widget is a multi-column listbox. The width of each column can be dynamic (i.e., just
large enough to hold all its elements, including the header) or static (specified in characters or
pixels). The columns are, per default, resizable. The alignment of each column can be specified
as left, right, or center.

The columns, rows, and cells can be configured individually. Several of the global and column-
specific options refer to the headers, implemented as label widgets. For instance, the -
labelcommand option specifies a Tcl command to be invoked when mouse button 1 is
released over a label. The most common value of this option is
tablelist::sortByColumn, which sorts the items based on the respective column.

The Tcl command corresponding to a tablelist widget is very similar to the one associated with a
normal listbox. There are column-, row-, and cell-specific counterparts of the configure and
cget subcommands (columnconfigure, columncget, ...). They can be used, among
others, to insert images into the cells and the header labels. The index and nearest
command options refer to the rows, but similar subcommands are provided for the columns and
cells (columnindex, nearestcolumn, ...). The items can be sorted with the sort and
sortbycolumn command options.

The bindings defined for the body of a tablelist widget make it behave just like a normal listbox.
This includes the support for the virtual event <<ListboxSelect>>, when using Tk version
8.1 or higher. In addition, version 2.3 or higher of the widget callback package Wcb (written in
pure Tcl/Tk code as well) can be used to define callbacks for the activate, selection
set, and selection clear commands. The download location of Wcb is

http://www.nemethi.de

4 Filling a Gap in Tk with Tablelist

2.2 How to get it?

Tablelist is available for free download from the same URL as Wcb. The distribution file is
tablelist2.5.tar.gz for UNIX and tablelist2_5.zip for Windows. These files
contain the same information, except for the additional carriage return character preceding the
linefeed at the end of each line in the text files for Windows.

2.3 How to install it?

Install the package as a subdirectory of one of the directories given by the auto_path variable.
For example, you can install it as a directory at the same level as the Tcl and Tk script libraries.
The locations of these library directories are given by the tcl_library and tk_library
variables, respectively.

To install Tablelist on UNIX, cd to the desired directory and unpack the distribution file
tablelist2.5.tar.gz:

gunzip -c tablelist2.5.tar.gz | tar -xf -

This command will create a directory named tablelist2.5, with the subdirectories demos,
doc, and scripts.

On Windows, use WinZip or some other program capable of unpacking the distribution file
tablelist2_5.zip into the directory tablelist2.5, with the subdirectories demos,
doc, and scripts.

Now you should check the exact version number of your Tcl/Tk distribution, given by the
tcl_patchLevel and tk_patchLevel variables. If you are using TcloTk version 8.2.X,
8.3.0 - 8.3.2, or 8.4a1, then you should upgrade your Tcl/Tk distribution to a higher release. This
is because a bug in these Tcl versions (fixed in Tcl 8.3.3 and 8.4a2) causes excessive memory
use when calling info exists on non-existent array elements, and Tablelist makes a lot of
invocations of this command.

If for some reason you cannot upgrade your Tcl/Tk version, then you should execute the Tcl
script repair.tcl in the directory scripts. This script makes a backup copy of the file
tablelistWidget.tcl, and then creates a new version of it by replacing all invocations of
info exists for array elements with a call to the helper procedure arrElemExists. The
patched file works with all Tcl/Tk releases starting with 8.0, but the original version has a better
performance.

2.4 How to use it?

To be able to access the commands and variables defined in the package Tablelist, your scripts
must contain one of the lines

package require Tablelist
package require tablelist

You can use either one of the above two statements because the file tablelist.tcl contains
both lines

Filling a Gap in Tk with Tablelist 5

package provide Tablelist ...
package provide tablelist ...

You are free to remove one of these two lines from tablelist.tcl if you want to prevent
the package from making itself known under two different names. Of course, by doing so you
restrict the argument of package require to a single name. Notice that the examples
below use the statement package require Tablelist.

Since the package Tablelist is implemented in its own namespace called tablelist, you must
either invoke the

namespace import tablelist::pattern ?tablelist::pattern ...?

command to import the procedures you need, or use qualified names like
tablelist::tablelist. In the examples below we have chosen the latter approach.

To access Tablelist variables, you must use qualified names. There are only two Tablelist
variables that are designed to be accessed outside the namespace tablelist:

• The variable tablelist::version holds the current version number of the Tablelist
package.

• The variable tablelist::library holds the location of the Tablelist installation
directory.

6 Filling a Gap in Tk with Tablelist

3 Tablelist Examples

Also this chapter is part of the Tablelist Programmer’s Guide.

3.1 A tablelist widget displaying configuration options

The file config.tcl in the demos directory contains a procedure
demo::displayConfig that displays the configuration options of an arbitrary widget in a
tablelist contained in a newly created top-level widget. This procedure can prove to be quite
useful during interactive GUI development. To test it, start wish and evaluate the file by using
the source command as follows:

• If wish was started in the demos directory then it is sufficient to enter

source config.tcl

• If wish was started in some other directory then you can use the
tablelist::library variable to find the location of the file:

package require Tablelist
source [file join $tablelist::library demos config.tcl]

In both cases, the script will print the following message to stdout:

To display the configuration options of an arbitrary widget, enter

 demo::displayConfig <widgetName>

It is assumed that the Tcl command associated with the widget specified by <widgetName>
has a configure subcommand which, when invoked without any argument, returns a list
describing all of the available configuration options for the widget, in the common format known
from the standard Tk widgets. The demo::displayConfig procedure inserts the items of

Filling a Gap in Tk with Tablelist 7

this list into a scrolled tablelist with 5 dynamic-width columns and interactive sort capability,
and returns the name of the newly created tablelist widget:

package require Tablelist

namespace eval demo {
 #
 # Add some entries to the Tk option database for the following
 # widget hierarchy within a toplevel widget of the class DemoTop:
 #
 # Name Class
 # -----------------------------
 # tf Frame
 # tbl Tabellist
 # vsb, hsb Scrollbar
 # bf Frame
 # b1, b2, b3 Button
 #
 switch $::tcl_platform(platform) {
 unix {
 option add *DemoTop*Font "Helvetica -12"
 }
 windows {
 option add *DemoTop.tf.borderWidth 2
 option add *DemoTop.tf.relief sunken
 option add *DemoTop.tf.tbl.borderWidth 0
 option add *DemoTop.tf.tbl.highlightThickness 0
 }
 macintosh {
 option add *DemoTop*Background #dedede

 option add *DemoTop.tf.borderWidth 2
 option add *DemoTop.tf.relief sunken
 option add *DemoTop.tf.tbl.borderWidth 0
 option add *DemoTop.tf.tbl.highlightThickness 0
 }
 }
 option add *DemoTop.tf.tbl.background gray96
 option add *DemoTop.tf.tbl.stripeBackground #e0e8f0
 option add *DemoTop.tf.tbl.selectBackground navy
 option add *DemoTop.tf.tbl.selectForeground white
 option add *DemoTop.tf.tbl.setGrid yes
 option add *DemoTop.bf.Button.width 10
}

#--
demo::displayConfig

Displays the configuration options of the widget w in a tablelist widget
contained in a newly created top-level widget. Returns the name of the
tablelist widget.
#--
proc demo::displayConfig w {
 if {![winfo exists $w]} {
 bell
 tk_messageBox -icon error -message "Bad window path name \"$w\"" \
 -type ok
 return ""
 }

 #
 # Create a top-level widget of the class DemoTop
 #
 set top .configTop
 for {set n 2} {[winfo exists $top]} {incr n} {

8 Filling a Gap in Tk with Tablelist

 set top .configTop$n
 }
 toplevel $top -class DemoTop
 wm title $top "Configuration Options of the [winfo class $w] Widget \"$w\""

 #
 # Create a scrolled tablelist widget with 5 dynamic-width
 # columns and interactive sort capability within the top-level
 #
 set tf $top.tf
 frame $tf
 set tbl $tf.tbl
 set vsb $tf.vsb
 set hsb $tf.hsb
 tablelist::tablelist $tbl \
 -columns {0 "Command-Line Name"
 0 "Database/Alias Name"
 0 "Database Class"
 0 "Default Value"
 0 "Current Value"} \
 -labelcommand tablelist::sortByColumn -sortcommand demo::compareAsSet \
 -xscrollcommand [list $hsb set] -yscrollcommand [list $vsb set] \
 -height 15 -width 100 -stretch all
 scrollbar $vsb -orient vertical -command [list $tbl yview]
 scrollbar $hsb -orient horizontal -command [list $tbl xview]

 #
 # Create three buttons within a frame child of the top-level widget
 #
 set bf $top.bf
 frame $bf
 set b1 $bf.b1
 set b2 $bf.b2
 set b3 $bf.b3
 button $b1 -text "Refresh" -command [list demo::putConfig $w $tbl]
 button $b2 -text "Sort as set" -command [list $tbl sort]
 button $b3 -text "Close" -command [list destroy $top]

 #
 # Manage the widgets
 #
 . . .

 #
 # Fill the tablelist with the configuration options of the given widget
 #
 putConfig $w $tbl
 return $tbl
}

The procedure invokes the tablelist::tablelist command to create a tablelist widget.
The value of the -columns option passed to this command specifies the widths, titles, and
alignments of the 5 columns. The width of each column is given as 0, specifying that the
column’s width is to be made just large enough to hold all the elements in the column, including
its title, which is the string following the width. We have omitted the alignment specifications
(which can optionally follow the titles), because the columns shall all be left-justified.

The command tablelist::sortByColumn, specified as the value of the
-labelcommand option, will be invoked whenever mouse button 1 is released over one of the
labels. This command sorts the items based on the column corresponding to that label, in the
right order, by invoking the sortbycolumn subcommand of the Tcl command associated with
the tablelist widget.

Filling a Gap in Tk with Tablelist 9

As seen from the creation of the button displaying the text "Sort as set", the items will
also be sorted by invoking the sort subcommand. This makes it necessary to specify a
command to be used for the comparison of the items, as the value of the -sortcommand
option. In our example this is the demo::compareAsSet procedure shown below.

By specifying the value all for the -stretch configuration option we make sure that all
columns will be stretched by the same number of pixels to eliminate the blank space that might
appear at the right of the table.

Besides the options given on the command line, our tablelist widget will automatically inherit the
ones contained in the Tk option database entries specified in the namespace initialization
preceding the demo::displayConfig procedure. The only non-standard name given here is
stripeBackground, corresponding to the -stripebackground configuration option.
Due to this entry, every other row of the tablelist widget will be displayed in the background
color #e0e8f0, which improves the readability of the items and gives the widget a nice
appearance.

We fill the tablelist by invoking the demo::putConfig procedure discussed below. The
same script is associated with the Refresh button, as the value of its -command configuration
option. This procedure is implemented as follows:

#--
demo::putConfig

Outputs the configuration options of the widget w into the tablelist widget
tbl.
#--
proc demo::putConfig {w tbl} {
 if {![winfo exists $w]} {
 bell
 tk_messageBox -icon error -message "Bad window path name \"$w\"" \
 -parent [winfo toplevel $tbl] -type ok
 return ""
 }

 #
 # Display the configuration options of w in the tablelist widget tbl
 #
 $tbl delete 0 end
 foreach configSet [$w configure] {
 #
 # Enclose the default and current values between braces if necessary
 #
 . . .

 #
 # Insert the list configSet into the tablelist widget
 #
 $tbl insert end $configSet

 #
 # Change the colors of the first and last cell of the row
 # if the current value is different from the default one
 #
 if {[llength $configSet] != 2 &&
 [string compare $default $current] != 0} {
 foreach col {0 4} {
 $tbl cellconfigure end,$col \
 -foreground red -selectforeground yellow

10 Filling a Gap in Tk with Tablelist

 }
 }
 }

 $tbl sortbycolumn 0
}

After deleting the current items of the tablelist widget tbl, the procedure inserts the items of the
list returned by the configure subcommand of the Tcl command associated with the widget
w. For each option whose current value is different from the default one, it invokes the
cellconfigure tablelist operation to change the values of the -foreground and
-selectforeground options of the cells no. 0 and 4, containing the command-line name of
the option and its current value.

Finally, here is the implementation of the comparison command demo::compareAsSet
mentioned above:

#--
demo::compareAsSet

Compares two items of a tablelist widget used to display the configuration
options of an arbitrary widget. The item in which the current value is
different from the default one is considered to be less than the other; if
both items fulfil this condition or its negation then string comparison is
applied to the two option names.
#--
proc demo::compareAsSet {item1 item2} {
 foreach {opt1 dbName1 dbClass1 default1 current1} $item1 \
 {opt2 dbName2 dbClass2 default2 current2} $item2 {
 set changed1 [expr {[string compare $default1 $current1] != 0}]
 set changed2 [expr {[string compare $default2 $current2] != 0}]
 if {$changed1 == $changed2} {
 return [string compare $opt1 $opt2]
 } elseif {$changed1} {
 return -1
 } else {
 return 1
 }
 }
}

3.2 A simple widget browser based on a tablelist

The file browse.tcl in the demos directory contains a procedure
demo::displayChildren that displays information about the children of an arbitrary
widget in a tablelist contained in a newly created top-level widget. To test it, start wish and
evaluate the file by using the source command, in a similar way as in the case of the previous
example.

The script will print the following message to stdout:

To display information about the children of an arbitrary widget, enter

 demo::displayChildren <widgetName>

Filling a Gap in Tk with Tablelist 11

The demo::displayChildren command inserts some data of the children of the widget
specified by <widgetName> into a vertically scrolled tablelist with 9 dynamic-width columns
and interactive sort capability, and returns the name of the newly created tablelist widget. By
double-clicking on an item or invoking the first entry of a pop-up menu within the body of the
tablelist, you can display the data of the children of the widget corresponding to the selected
item, and with the second menu entry you can display its configuration options (see the previous
example for details). To go one level up, click on the Parent button.

package require Tablelist

namespace eval demo {
 set dir [file join $tablelist::library demos]

 #
 # Create two images, needed in the procedure putChildren
 #
 set leafImg [image create bitmap -file [file join $dir leaf.bmp] \
 -background coral -foreground gray50]
 set compImg [image create bitmap -file [file join $dir comp.bmp] \
 -background yellow -foreground gray50]
}

source [file join $demo::dir config.tcl]

#--
demo::displayChildren

Displays information on the children of the widget w in a tablelist widget
contained in a newly created top-level widget. Returns the name of the
tablelist widget.
#--
proc demo::displayChildren w {
 if {![winfo exists $w]} {
 bell
 tk_messageBox -icon error -message "Bad window path name \"$w\"" \
 -type ok
 return ""
 }

 #
 # Create a top-level widget of the class DemoTop
 #
 set top .browseTop

12 Filling a Gap in Tk with Tablelist

 for {set n 2} {[winfo exists $top]} {incr n} {
 set top .browseTop$n
 }
 toplevel $top -class DemoTop

 #
 # Create a vertically scrolled tablelist widget with 9 dynamic-width
 # columns and interactive sort capability within the top-level
 #
 set tf $top.tf
 frame $tf
 set tbl $tf.tbl
 set vsb $tf.vsb
 tablelist::tablelist $tbl \
 -columns {0 "Path Name" left
 0 "Class" left
 0 "X" right
 0 "Y" right
 0 "Width" right
 0 "Height" right
 0 "Mapped" center
 0 "Viewable" center
 0 "Manager" left} \
 -labelcommand demo::labelCmd -yscrollcommand [list $vsb set] -width 0
 foreach col {2 3 4 5} {
 $tbl columnconfigure $col -sortmode integer
 }
 foreach col {6 7} {
 $tbl columnconfigure $col -formatcommand demo::formatBoolean
 }
 scrollbar $vsb -orient vertical -command [list $tbl yview]

 #
 # When displaying the information about the children of any
 # ancestor of the label widgets, the widths of some of the
 # labels and thus also the widths and x coordinates of some
 # children may change. For this reason, make sure the items
 # will be updated after any change in the sizes of the labels
 #
 foreach l [$tbl labels] {
 bind $l <Configure> [list demo::updateItemsDelayed $tbl]
 }
 bind $tbl <Configure> [list demo::updateItemsDelayed $tbl]

 #
 # Create a pop-up menu with two command entries; bind the script
 # associated with its first entry to the <Double-1> event, too
 #
 set menu $top.menu
 menu $menu -tearoff no
 $menu add command -label "Display children" \
 -command [list demo::putChildrenOfSelWidget $tbl]
 $menu add command -label "Display config" \
 -command [list demo::dispConfigOfSelWidget $tbl]
 set body [$tbl bodypath]
 bind $body <<Button3>> [bind TablelistBody <Button-1>]
 bind $body <<Button3>> +[list demo::postPopupMenu $top %X %Y]
 bind $body <Double-1> [list demo::putChildrenOfSelWidget $tbl]

 #
 # Create three buttons within a frame child of the top-level widget
 #
 set bf $top.bf
 frame $bf
 set b1 $bf.b1
 set b2 $bf.b2

Filling a Gap in Tk with Tablelist 13

 set b3 $bf.b3
 button $b1 -text "Refresh"
 button $b2 -text "Parent"
 button $b3 -text "Close" -command [list destroy $top]

 #
 # Manage the widgets
 #
 . . .

 #
 # Fill the tablelist with the data of the given widget’s children
 #
 putChildren $w $tbl
 return $tbl
}

The procedure invokes the tablelist::tablelist command to create a tablelist widget.
The value of the -columns option passed to this command specifies the widths, titles, and
alignments of the 9 columns. The width of each column is given as 0, specifying that the
column’s width is to be made just large enough to hold all the elements in the column, including
its title, which is the string following the width. Each of the titles is followed by an alignment,
which indicates how to justify both the elements and the title of the respective column.

The command demo::labelCmd, specified as the value of the -labelcommand option, will
be invoked whenever mouse button 1 is released over one of the labels. We will discuss this
procedure a little later.

We specify the value 0 for the widget’s -width option, meaning that the tablelist’s width shall
be made just large enough to hold all its columns.

After creating the tablelist widget, we make sure that the elements of its columns 2, 3, 4, and 5
(displaying the x and y coordinates as well as the widths and heights of the children) will be
compared as integers when sorting the items based on one of these columns. We do this with the
aid of the columnconfigure tablelist operation.

The same columnconfigure subcommand enables us to specify that, when displaying the
elements of columns 6 and 7 (having the titles "Mapped" and "Viewable", respectively), the
boolean values 1 and 0 will be replaced with the strings "yes" and "no", returned by the
demo::formatBoolean command shown below.

After creating the vertical scrollbar, we iterate over the elements of the list containing the path
names of all header labels of the tablelist widget, returned by the labels subcommand of the
Tcl command corresponding to the widget. For each element of the list, we bind the procedure
demo::updateItemsDelayed to the <Configure> event. In this way we make sure the
procedure will be invoked whenever the header label indicated by that list element changes size.

The three invocations of the bind command following the creation of the pop-up menu use the
path name of the tablelist’s body, returned by the bodypath subcommand of the Tcl command
associated with the tablelist widget. Both the <<Button3>> virtual event (used in the first two
bind commands) and the TablelistBody binding tag (used in the first binding script) are
created by the Tablelist package. The first two bind commands make sure that a

14 Filling a Gap in Tk with Tablelist

<<Button3>> virtual event will select the nearest item and will post a pop-up menu with two
command entries that refer to the widget described by that item.

We fill the tablelist by invoking the demo::putChildren procedure, implemented as
follows:

#--
demo::putChildren

Outputs the data of the children of the widget w into the tablelist widget
tbl.
#--
proc demo::putChildren {w tbl} {
 #
 # The following check is necessary because this procedure
 # is also invoked by the "Refresh" and "Parent" buttons
 #
 if {![winfo exists $w]} {
 . . .
 }

 set top [winfo toplevel $tbl]
 wm title $top "Children of‘the [winfo class $w] Widget \"$w\""

 #
 # Display the data of the children of the
 # widget w in the tablelist widget tbl
 #
 variable leafImg
 variable compImg
 $tbl resetsortinfo
 $tbl delete 0 end
 foreach c [winfo children $w] {
 #
 # Insert the data of the current child into the tablelist widget
 #
 set item {}
 lappend item $c [winfo class $c] [winfo x $c] [winfo y $c] \
 [winfo width $c] [winfo height $c] [winfo ismapped $c] \
 [winfo viewable $c] [winfo manager $c]
 $tbl insert end $item

 #
 # Insert an image into the first cell of the row
 #
 if {[llength [winfo children $c]] == 0} {
 $tbl cellconfigure end,0 -image $leafImg
 } else {
 $tbl cellconfigure end,0 -image $compImg
 }
 }

 #
 # Configure the "Refresh" and "Parent" buttons
 #
 $top.bf.b1 configure -command [list demo::putChildren $w $tbl]
 set b2 $top.bf.b2
 set p [winfo parent $w]
 if {[string compare $p ""] == 0} {
 $b2 configure -state disabled
 } else {
 $b2 configure -state normal -command [list demo::putChildren $p $tbl]
 }
}

Filling a Gap in Tk with Tablelist 15

After resetting the sorting information by invoking the resetsortinfo subcommand and
deleting the current items of the tablelist widget tbl, the procedure iterates over the children of
the specified widget and inserts the items built from some data retrieved by using the winfo
command. For each child, it invokes the cellconfigure tablelist operation to set the value
of the -image option of the first cell, containing the path name of the child. In this way, the
procedure inserts the image $leafImg or $compImg into the first cell, depending upon
whether the child in question is a leaf or a composite widget. Remember that both images were
created outside this procedure, within the initialization of the demo namespace.

The demo::formatBoolean and demo::labelCmd procedures mentioned above are
trivial:

#--
demo::formatBoolean

Returns "yes" or "no", according to the specified boolean value.
#--
proc demo::formatBoolean val {
 if {$val} {
 return yes
 } else {
 return no
 }
}

#--
demo::labelCmd

Sorts the contents of the tablelist widget tbl by its col’th column and makes
sure the items will be updated 500 ms later (because one of the items might
refer to the canvas containing the arrow that displays the sorting order).
#--
proc demo::labelCmd {tbl col} {
 tablelist::sortByColumn $tbl $col
 updateItemsDelayed $tbl
}

The command tablelist::sortByColumn sorts the items of the tablelist widget by the
specified column in the right order, by invoking the sortbycolumn subcommand of the Tcl
command associated with the tablelist widget.

The implementation of the demo::updateItemsDelayed command, invoked in this
procedure and already encountered in the demo::displayChildren procedure above, is
quite simple:

#--
demo::updateItemsDelayed

Arranges for the items of the tablelist widget tbl to be updated 500 ms
later.
#--
proc demo::updateItemsDelayed tbl {
 #
 # Schedule the demo::updateItems command for execution
 # 500 ms later, but only if it is not yet pending
 #
 if {[string compare [$tbl attrib afterId] ""] == 0} {
 $tbl attrib afterId [after 500 [list demo::updateItems $tbl]]
 }

16 Filling a Gap in Tk with Tablelist

}

#--
demo::updateItems

Updates the items of the tablelist widget tbl.
#--
proc demo::updateItems tbl {
 #
 # Reset the tablelist’s "afterId" attribute
 #
 $tbl attrib afterId ""

 #
 # Update the items
 #
 set rowCount [$tbl size]
 for {set row 0} {$row < $rowCount} {incr row} {
 set c [$tbl cellcget $row,0 -text]
 if {![winfo exists $c]} {
 continue
 }

 set item {}
 lappend item $c [winfo class $c] [winfo x $c] [winfo y $c] \
 [winfo width $c] [winfo height $c] [winfo ismapped $c] \
 [winfo viewable $c] [winfo manager $c]
 $tbl rowconfigure $row -text $item
 }
}

Each tablelist widget may have any number of private attributes, which can be set and retrieved
with the aid of the attrib subcommand of the Tcl procedure corresponding to the widget. As
shown above, the afterId attribute is set by the demo::updateItemsDelayed procedure
when sheduling the demo::updateItems command for execution 500 ms later, but only if
its value is an empty string. For this reason, the demo::updateItems procedure resets this
attribute. It also makes use of the cellcget tablelist command to get the path names
contained in the first cell of each row, and updates the data of the children with the aid of the
rowconfigure command.

The remaining three procedures are also straight-forward. For example, the
demo::putChildrenOfSelWidget command shown below makes use of the
curselection subcommand to get the index of the selected row. More precisely,
curselection returns a list, but in our case this list will have exactly one element, hence it
can be used directly as the first component of a cell index.

#--
demo::putChildrenOfSelWidget

Outputs the data of the children of the selected widget into the tablelist
widget tbl.
#--
proc demo::putChildrenOfSelWidget tbl {
 set w [$tbl cellcget [$tbl curselection],0 -text]
 if {![winfo exists $w]} {
 bell
 tk_messageBox -icon error -message "Bad window path name \"$w\"" \
 -parent [winfo toplevel $tbl] -type ok
 return ""
 }

Filling a Gap in Tk with Tablelist 17

 if {[llength [winfo children $w]] == 0} {
 bell
 } else {
 putChildren $w $tbl
 }
}

3.3 Improving the look & feel of a tablelist widget

The script styles.tcl in the demos directory demonstrates some ways of making tablelist
widgets smarter and improving the readability of their items. It creates 6 tablelist widgets,
shown in the following figure:

Here is the relevant code segment:

Create, configure, and populate 6 tablelist widgets

frame .f
for {set n 0} { $n < 6} {incr n} {
 set tbl .f.tbl$n
 tablelist::tablelist $tbl \
 -columns {0 "Label 0" 0 "Label 1" 0 "Label 2" 0 "Label 3"} \
 -background gray96 -selectbackground navy -selectforeground white \
 -height 4 -width 40 -stretch all

 switch $n {
 1 { ;# top right tablelist
 $tbl configure -showseparators yes
 }
 2 { ;# middle left tablelist
 $tbl configure -stripebackground #e0e8f0
 }
 3 { ;# middle right tablelist

18 Filling a Gap in Tk with Tablelist

 $tbl configure -stripebackground #e0e8f0 -showseparators yes
 }
 4 { ;# bottom left tablelist
 foreach col {1 3} {
 $tbl columnconfigure $col -background linen
 }
 }
 5 { ;# bottom right tablelist
 $tbl configure -showseparators yes
 foreach col {1 3} {
 $tbl columnconfigure $col -background linen
 }
 }
 }

 foreach row {0 1 2 3} {
 $tbl insert end \
 [list "Cell $row,0" "Cell $row,1" "Cell $row,2" "Cell $row,3"]
 }
}

The only configuration option used here but not encountered in the first two examples is
-showseparators. The visual effect it produces looks nice both by itself and combined with
horizontal or vertical stripes, created by using the -stripebackground option and the
columnconfigure command, respectively. On the other hand, it is no good idea to mix
horizontal stripes with vertical ones.

Filling a Gap in Tk with Tablelist 19

4 Tablelist Quick Reference

4.1 The tablelist::tablelist command

NAME

tablelist::tablelist - Create and manipulate tablelist widgets

SYNOPSIS

tablelist::tablelist pathName ?options?

STANDARD OPTIONS

-borderwidth -highlightthickness -setgrid
-cursor -relief -xscrollcommand
-exportselection -selectbackground -yscrollcommand
-highlightbackground -selectborderwidth
-highlightcolor -selectforeground

OPTIONS FOR THE BODY COMPONENT OF THE WIDGET

-background -disabledforeground -font -foreground

WIDGET-SPECIFIC OPTIONS

-activestyle underline|frame
-arrowcolor color
-arrowdisabledcolor color
-columns {width title ?left|right|center? \
 ?width title ?left|right|center? ...?}
-height lines
-incrarrowtype up|down
-labelbackground color or -labelbg color
-labelborderwidth pixels or -labelbd pixels
-labelcommand command
-labeldisabledforeground color
-labelfont fontName
-labelforeground color or -labelfg color
-labelheight lines
-labelpady pixels
-labelrelief relief
-listvariable variable
-resizablecolumns boolean
-resizecursor cursor
-selectmode mode (single|browse|multiple|extended)
-showarrow boolean
-showlabels boolean
-showseparators boolean
-sortcommand command
-state normal|disabled
-stretch all|list
-stripebackground color or -stripebg color
-stripeforeground color or -stripefg color
-stripeheight lines
-takefocus 0|1|""|command
-width characters

COLUMN CONFIGURATION OPTIONS

-align left|right|center
-background color or -bg color

20 Filling a Gap in Tk with Tablelist

-font font
-foreground color or -fg color
-formatcommand command
-hide boolean
-labelalign left|right|center
-labelbackground color or -labelbg color
-labelborderwidth pixels or -labelbd pixels
-labelcommand command
-labelfont fontName
-labelforeground color or -labelfg color
-labelheight lines
-labelpady pixels
-labelrelief relief
-labelimage image
-resizable boolean
-selectbackground color
-selectforeground color
-showarrow boolean
-sortcommand command
-sortmode ascii|command|dictionary|integer|real
-title title
-width width

ROW CONFIGURATION OPTIONS

-background color or -bg color
-font font
-foreground color or -fg color
-selectable boolean
-selectbackground color
-selectforeground color
-text value

CELL CONFIGURATION OPTIONS

-background color or -bg color
-font font
-foreground color or -fg color
-image image
-selectbackground color
-selectforeground color
-text value

ROW INDICES

number active anchor end @x,y

COLUMN INDICES

number end @x,y

CELL INDICES

row,col end @x,y
row : number active anchor end
col : number end

WIDGET COMMAND

pathName activate index
pathName attrib ?name? ?value name value ...?
pathName bbox index
pathName bodypath

Filling a Gap in Tk with Tablelist 21

pathName cellcget cellIndex option
pathName cellconfigure cellIndex ?option? ?value option value ...?
pathName cellindex cellIndex
pathName cget option
pathName columncget columnIndex option
pathName columnconfigure columnIndex ?option? ?value option value ...?
pathName columncount
pathName columnindex columnIndex
pathName configure ?option? ?value option value ...?
pathName curselection
pathName delete first ?last?
pathName get first ?last?
pathName index index
pathName insert index ?item item ...?
pathName insertlist index itemList
pathName labelpath columnIndex
pathName labels
pathName nearest y
pathName nearestcell x y
pathName nearestcolumn x
pathName resetsortinfo
pathName rowcget index option
pathName rowconfigure index ?option? ?value option value ...?
pathName scan mark|dragto x y
pathName see index
pathName selection option args

pathName selection anchor index
pathName selection clear first last
pathName selection includes index
pathName selection set first last

pathName separatorpath columnIndex
pathName separators
pathName size
pathName sort ?-increasing|-decreasing?
pathName sortbycolumn columnIndex ?-increasing|-decreasing?
pathName sortcolumn
pathName sortorder
pathName xview args

pathName xview
pathName xview units
pathName xview moveto fraction
pathName xview scroll number what

pathName yview args
pathName yview
pathName yview index
pathName yview moveto fraction
pathName yview scroll number what

4.2 The tablelist::sortByColumn command

NAME

tablelist::sortByColumn - Sort the items of a tablelist widget based on one of its columns

SYNOPSIS

tablelist::sortByColumn pathName columnIndex

