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1. Interactive 3D Graphics

Applications of interactive 3D graphics
- Information Visualization
- Scientific Visualization
- CAD/CAM 
- Entertainment and Gaming
- Education

Elements of interactive 3D graphics 
- Rendering of 3D scenes in real-time
- Interaction with 3D objects and 3D scenes
- Animation of 3D objects and 3D scenes
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Developing interactive 3D graphics applications
- Programming based on 

low-level libraries, e.g., OpenGL
- Programming based on higher-level 

toolkits, e.g., OpenInventor, Java3D

Characteristics: 
- System programming languages
- High performance
- API with large number of data 

structures, functions, or classes
- Strong typing
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1. Interactive 3D Graphics

Difficulties developing 3D Applications

- Programming and Configuring of 3D applications
How to modify 3D scenes?
How to experiment with features?

Every access by system programming language requires 
compile-link cycles, which increase development time

- Exploring and understanding of 3D graphics libraries
How to find features?
Which function do I need? … 

Difficult to find appropriate functionality in large and complex APIs
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1. Interactive 3D Graphics

Our Solution
- Apply a high-level object-oriented 3D graphics library
- Map its C++ API and meta information to Tcl
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2. Interactive Virtual Rendering System2. Interactive Virtual Rendering System
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2.  Interactive Virtual Rendering System

Virtual Rendering System (VRS)

General-purpose 3D graphics library
- Support for 3D modeling, interaction, 

and animation
- Scene graph
- Rendering based on OpenGL

Implementation
- Object-oriented
- Written in C++
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2.  Interactive Virtual Rendering System

Virtual Rendering System (VRS)
Advanced real-time rendering techniques
- Shadows
- Reflections
- Bump mapping
- Multi-texturing
IO support 
- Image:  bmp, ppm, jpeg, tiff …
- Video: avi, mpeg
2D Imaging
- Image manipulation
- Convolution filtering
Support for additional rendering systems
- BMRT (RenderMan)
- POVRay
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Scene Graph 
SceneThing (scene-root) 

Cylinder (cyl1) 

SceneThing (cylinders) 

Color (blue) 

DistantLight (lamp) 
Camera (cam) 

attribute shape scene node 

Sphere (sp) 

SceneThing (sphere-object) 

Color (red) 

Material (mat) 

Cylinder (cyl2) 

Color (green) 

2.  Interactive Virtual Rendering System

VRS Core Elements
Shapes

sphere,cylinder, point, line, 
level-of-detail mesh, …

Graphics Attributes
color, material, texture, 
light sources, …

Transformations
rotation, scaling, translation, 
billboarding …

Nodes
container objects
build scene graphs
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2.  Interactive Virtual Rendering System

Observations
- Manipulation of scene graphs occurs frequently 

during 3D application development 

- Manipulation of scene graphs implies recompilation 
and linking
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Scene graph manipulation is a time-critical aspect in  
developing 3D graphics applications

How can we speed up developing process?
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developing 3D graphics applications

How can we speed up developing process?
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2.  Interactive Virtual Rendering System

Interactive Virtual Rendering System
= Easily program 3D graphics by scripting, 

thereby doing time-critical operations in C++ 

+ Map VRS API to corresponding Tcl commands

+ Create, manipulate, destroy VRS objects by Tcl
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Interactive 3D application development
access to class and API reflection information
reconfiguration of all objects at run-time

No loss of rendering performance
rendering as time-critical part is executed at C++ level
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2.  Interactive Virtual Rendering System

VRS: Virtual Rendering System

VRS Tcl

C++ library

iVRS

iVRS: interactive VRS
C++ library

530 classes
2500 methods

40 template classes

300 classes
2000 methods

100 template instances

Tcl interpreter

C library
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2.  Interactive Virtual Rendering System

Example: C++ API mapped to Tcl
VRS/C++

Sphere* mysphere = new Sphere(12);
mysphere->setRadius(15);
delete mysphere

Example: C++ API mapped to Tcl
VRS/C++

Sphere* mysphere = new Sphere(12);
mysphere->setRadius(15);
delete mysphere

iVRS/Tcl 
set mysphere [new Sphere 12]
$mysphere setRadius 15
delete $mysphere

iVRS/Tcl 
set mysphere [new Sphere 12]
$mysphere setRadius 15
delete $mysphere



8

European Tcl/Tk User Meeting '02 Oliver Kersting - University of Potsdam 15

3. API Mapping Technique3. API Mapping Technique
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3. API Mapping Technique

Major Steps of the Mapping Process
- Analyze C++ API
- Generate C++ wrapper code
- Compile C++ wrapper code
- Build Tcl extension package

Mapping Features
- Static, virtual, and overloaded methods
- Default arguments
- Enumerations
- Template classes
- Reference counting

Wrapper classes and method tables
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3. API Mapping Technique – Wrapper Class

iVRS Wrapper Class (Implementation Detail)
- Reflects interface of a VRS class with wrapper 

methods which exclusively use string arguments
- A wrapper method converts incoming string arguments 

to original types, completes missing arguments with 
default values, and calls the wrapped method

iVRS Wrapper Class (Implementation Detail)
- Reflects interface of a VRS class with wrapper 

methods which exclusively use string arguments
- A wrapper method converts incoming string arguments 

to original types, completes missing arguments with 
default values, and calls the wrapped method

0..1

A

+A(v:double)
+getValue():double
+setValue(v:double,b:bool):void
+modified():void

AWrap

-obj:A *

+_A_double(argc:int,argv:char * *):char *
+_getValue(argc:int,argv:char * *):char *
+_setValue_double_bool(argc:int,argv:char * *):char 
+_modified(argc:int,argv:char * *):char *

Wrapped Class Wrapper Class

Wrapped Method Wrapper Method
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3. API Mapping Technique – Method Table

iVRS Method Table (Implementation Detail)
- Stores information about signatures of methods of 

wrapped classes
- Signature information is required to decide which 

wrapped method should be called at run-time

iVRS Method Table (Implementation Detail)
- Stores information about signatures of methods of 

wrapped classes
- Signature information is required to decide which 

wrapped method should be called at run-time

AWrap::_modified00“”“modified”

AWrap::_getValue00“”“getValue”

AWrap::_setValue_double_bool21“double bool”“setValue”

AWrap::_A_double11“double”“A”

Method PointerMaxMinArgumentsMethod Name

Enables iVRS to call polymorph methods, methods 
using default values and overloaded methods 
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4. Developing 3D Applications 
with iVRS

4. Developing 3D Applications 
with iVRS
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4. Examples
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4. Examples - 3D Object Viewer
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4. Examples - 3D Object Viewer

package require iVRS

set myCanvas [new TclCanvas .view 400 400]
pack .view

set myScene [new SceneThing]

set myCamera [new Camera {0 –2 –2} {0 0 0} 60]
$myScene append $myCamera

set distantlight [new DistantLight]
$myScene append $distantlight

set my3ds [ObjectLoader readFile dragon.3ds]
$myScene append $my3ds

$myCanvas append $myScene

$myCanvas append [new TrackBall $my3ds]
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4. Examples – iVRS IDE

iVRS Integrated Development EnvironmentiVRS Integrated Development Environment
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4. Examples – iVRS IDE

iVRS Integrated Development Environment
Meta information at run-time
- Base class and child classes
- Methods including complete signature
- Enumerations
- Instantiated objects
- Object relationships

Automated GUI components for VRS objects

Integrated help system
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4. Examples – LandExplorer

LandExplorer: 3D Map System based on iVRS
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5. Conclusions5. Conclusions



14

European Tcl/Tk User Meeting '02 Oliver Kersting - University of Potsdam 27

5. Conclusions

iVRS
- Allows developers to program and configure

interactive 3D graphics applications interactively at 
run-time

- Allows developers to explore the complete API 
interactively

- Supports platform-independent 3D graphics 
application development

- Facilitates rapid prototyping

- Offers real-time rendering for scripting languages 
without any remarkable loss of performance
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Future Work and License

Future Work
- Add C++ comments to iVRS meta information
- Add VRS namespace in Tcl
- Improve error messaging

- Support for additional scripting languages

License
iVRS is Open Source Software
GNU Lesser General Public License 

Future Work
- Add C++ comments to iVRS meta information
- Add VRS namespace in Tcl
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License
iVRS is Open Source Software
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