
First European Tcl/Tk User Meeting, June 15–16 2000, TU Hamburg-Harburg

tmk – A Multi-Site, Multi-Platform
System for Software Development

Hartmut Schirmacher, Stefan Brabec∗

Max-Planck-Institut für Informatik
Im Stadtwald, 66123 Saarbrücken

Abstract

tmk is a tool that embeds the functionality of make in the scripting lan-
guage Tcl in a very simple and convenient way. Furthermore, tmk allows
higher levels of abstraction via modules and a flexible configuration frame-
work. In addition to using tmk simply as a replacement for make, the users
can create projects with global methods, objects, and options, and extend or
modify the globally defined tasks using per-directory control files similar to
the traditional Makefile concept.

We give a brief overview of tmk’s core concepts, such as target and de-
pendency definition, exception handling, and parameterization of targets and
modules. Furthermore, we show some examples of how to use tmk’s config-
uration system for multi-platform software development and projects shared
by multiple sites.

1 Introduction and Related Work

Task automation plays an important role in the context of complex structures and
computations. In areas such as software development and system administration,
the tool of choice for doing this has been make for a long time, nowadays mostly
replaced by GNU make [8]. Both basically work by checking file timestamps and
executing shell commands that update the corresponding files if necessary.

1.1 Motivation

Although GNU make is a sophisticated tool that provides a lot of very special
functions, many users have found it inconvenient to use for different reasons.

First, make and GNU make have a very special (some say cryptic) syntax
of their own [8], and the user has to understand both this syntax and that of the
command shell used for executing the actual commands.

∗{schirmacher,brabec}@mpi-sb.mpg.de · http://www.mpi-sb.mpg.de

1

Second, the proprietary syntax also implies a lack of control structures and ab-
straction concepts within the Makefile. GNU make adds some more structural
elements, but it is still not suited for scripting in general.

Third, the communication between make and the called shell scripts is quite
primitive, especially from the script back to make. The basic understanding is that
make tests whether an action seems necessary, and then calls a command or script
that does the actual work.

Finally, another inconvenience with make is the lack of real support for multi-
directory processing and inter-directory dependencies, which makes it quite hard
to manage large project trees with make in a transparent fashion. Moreover,
architecture- and site-dependent settings cannot be hidden from the Makefile
user, which complicates the design of a portable Makefile. A similar prob-
lem is the construction of variants, which can only be accomplished using various
workarounds that make each Makefile still more complex.

1.2 Perl and cons

One promising way of avoiding many of the above-mentioned problems is to em-
bed make’s functionality into a powerful and well-established scripting language
such as Perl or Tcl. Bob Sidebotham has created such a tool called cons [1].
cons uses control files written in the the Perl language, and allows to define
so-called construction environments that hold a number of variables for parameter-
izing the building rules. cons addresses most of the problems mentioned above,
including native scripting features, multi-directory projects, abstraction from rules
and configuration, and variant building. However, the basic language is Perl, the
syntax of which does not appeal to everybody. Moreover, the concepts introduced
by cons are very powerful, but they do not necessarily lead to very simple and
transparent control files.

1.3 Tcl, tclmake, and bras

Up to our knowledge two tools have been presented that try to bring together make
and Tcl. The first one, called tclmake [5], processes files written in a subset of
regular make syntax, but with the commands for each rule written in Tcl. Al-
though tclmakemakes it possible to use Tcl commands for building the targets,
unfortunately the strange make syntax is kept, and target definitions cannot be well
embedded into scripts. As stated by the author, tclmake does not aim to replace
make, and there is no support for any abstraction layer on top of the core make
functionality.

“Another kind of make” is presented by Harald Kirsch’s bras tool [3]. Mo-
tivated by similar reasons to those presented in Sec. 1.1, Kirsch has implemented
the core functionality of make as a set of Tcl procedures. bras allows to de-
fine targets and dependencies in a more abstract and flexible way than make, and
especially it is possible to define arbitrary conditions that trigger a rule, not just

2

those based on a file’s time stamp. bras also supports explicitly specified inter-
directory dependencies and a globally defined rule database. However, it does not
extend to such abstraction layers as architecture-dependent or variant builds, or
site-dependent configuration. Additionally, subdirectory processing is limited (due
to variable scope problems), and bras cannot properly choose among multiple
rules for the same target.

2 tmk Overview

The design of tmk has been driven by the demand for two things: a simple sys-
tem for managing larger software projects without having platform- or site-specific
code in each Makefile, and a scripting environment that is combined with the
core functionality of make. As common basis for achieving both goals, we have
chosen to embed make-like functions into Tcl. Additionally, the tmk core na-
tively supports architecture-dependent output, multi-directory processing, and things
such as exception/exclusion handling.

On top of the tmk core, we have added additional abstraction layers by a mod-
ule mechanism and a centralized configuration system. Through this, it is possible
to remove any platform- or configuration-specific code from the control files.

In the context of this paper we can only briefly sketch tmk’s components. If
you want to know more about a specific topic, please have a look at the tmk tutorial
and tmk reference manual, both available on the world wide web [6, 7].

2.1 The tmk core

As it has already been demonstrated in [3], it is relatively easy to embed the core
functionality of make into Tcl. The control files for tmk are simply Tcl scripts,
called TMakefiles. From the user’s point of view, the tmk core consists of the
following three procedures:

target {target-list} {src-list} {rule-script}
depend {target-list} {dep-list}
build {target-list}

target defines how to create a target from a set of source files or primary depen-
dencies. depend is used to declare additional secondary dependencies. Primary
dependencies alone are used to select the appropriate rule (if there are multiple can-
didates) for each target, whereas secondary dependencies simply define additional
preconditions before the dependent target can be built. build declares default
targets that can be overridden on the command line.

Rule Triggering. In a way similar to make, rules are triggered when the
target does not exist or any of the dependencies is newer than the target. In con-
trast to make, targets without primary dependencies are only built if they do not
exist. Only if a target depends on the special symbol ALWAYS BUILD, it is built
unconditionally.

3

Target Patterns. Glob-style pattern matching and special variables are used
for defining target classes and target-dependent expressions. The following ex-
ample shows how different glob-matched parts of the target name as well as the
complete name can be used in the source file expression and in the rule script:

target pic*.step*.* {pic$0.step[expr $1 - 1].$2} {
puts "creating $TARGET from $SRC"

}
build pic34.step5.jpg

This example will produce the following output:

creating pic34.step5.jpg from pic34.step4.jpg

Exceptions and Exclusions. In addition to these most basic features, tmk
also has a way of handling exceptions and exclusions. An exclusion means that
some target will not be built and will not appear as dependency in any rule. Tar-
gets that loose all their primary dependencies because of excluded source files will
also be skipped. An exception temporarily overrides the values of some variables
for just some targets. Exceptions also allow to replace the rule completely by a
different one.

Output Directory. Another important feature of the tmk core is that all
targets can be placed in an architecture-dependent output directory. If switched on,
this mechanism automatically and transparently augements target and dependency
names by a directory named $ARCH. This allows to generate code separately on
different machines without any further effort. Furthermore, the generated files can
be well distinguished from the original ones.

Target State. Targets and dependencies are cached, and it is possible to
query and modify their state. For example, a rule that is triggered can perform a
more sophisticated test in order to determine whether the target really needs to be
updated. If not, the script simply marks the target as untouched, thereby not falsely
triggering any further rules.

2.2 Modules and Configuration

On top of the core, tmk has a module mechanism that allows to globally store
rules, options, and procedures for certain classes of tasks. Modules are explic-
itly requested in the control files in order to allow the user to choose the right
set of methods for the specific task, and they are parameterized through global
or namespace-relative variables. Have a look at Section 4 for some examples of
module usage.

Site-dependent variables (e.g. installation paths) are not defined inside the mod-
ule, but rather in the appropriate site-config files that are processed by tmk’s cen-
tral configuration system. Similar to this, tmk reads arch-config files that define
architecture-dependent options, like for example a procedure for how to call the
compiler and linker for a certain task.

4

Tcl defines a large number of basic commands that transparently hide the
underlying operating system. Therefore, module writers and users can design
portable and transparent scripts and rule databases. The configuration variables
and procedures allow to extend and modify the predefined configuration in a sim-
ple and convenient way, without touching the code in the individual TMakefile.

3 tmk’s Configuration System

As already mentioned, tmk’s control files can easily be designed to be platform
and site independent1 . Usually, porting a project to a different platform starts with
re-writing and patching lots of Makefiles and/or configuration scripts. Automa-
tion for this task exists, but is usually limited to certain systems. For X11-based
systems, configuration and portability can be achieved with tools like imake [2],
whereas in the non-UNIX world (Windows 95/98/NT, MacOS, etc.) multi-
platform projects are managed using so called Integrated Development Environ-
ments (IDE) that provide virtually the same view for different underlying architec-
tures.

Major drawbacks of nearly all those development tools are that they are either
too complex and inconvenient for everyday use, or they do not provide the desired
flexibility.

The approach presented in this paper is slightly different: Instead of treating
Makefiles as system-specific, all details of the underlying hard- and software are
encapsulated centrally by tmk itself. In this scenario, the TMakefile is no longer
a system interface, but an abstract mechanism to describe how all the files in a
project should be processed to build the final products.

3.1 Multi-Platform Support

The first step in building an abstraction layer is already done by Tcl itself since
its available for a wide range of systems. In contrast to traditional shell com-
mand based system, such as make or autoconf [4], the Tcl language provides
a well-defined set of comprehensive structural elements (procedures, loops, lists,
variables, associative arrays) as well as a large number of architecture-independent
library functions (filename handling and file operations, network communications,
resource manipulation, systems information queries).

tmk extends this abstraction concept further by hiding platform-specific de-
tails such as compilers and software packages. The principal idea behind this is
sketched in Fig. 1. The configuration system is split into two major branches.
The first covers architecture-specific information such as compiler environments,
operating systems, and system-specific utilities, while the other branch is used to

1site in this context means the local computing environment, e.g. the location and versions of
libraries, compilers etc.

5

Figure 1: The components that build up tmk. The configuration is split into two
major branches to separate architecture-specific configuration from site-related is-
sues like package existence and installation paths. The CONFIG/ARCH branch is
split further to distinguish between operating-system support and things like com-
piler environments and OS-specific helper tools.

describe the site-specific environment, e.g. information about the availability of
packages as well as local installation paths and library names.

For example, the CONFIG/ARCH/COMPILER branch defines a meta compiler
interface for compiling object files, linking executables and libraries, and main-
taining dependency information. Rather than constructing the necessary command
lines by simple textual substitutions and flag combination, the compiler meta-
functions are comprehensive procedures that can easily be adopted even for very
uncommon compiler syntax or semantics.

So far the described concept has proved to be convenient for integrating several
different compiler environments, such as

• SGI MIPSPro Compiler System
• GNU Compiler Collection (gcc)
• Borland C/C++ Compiler 5.5 (BCC)
• Microsoft Visual C/C++
• SUN WorkshopPro.2

In order to add support for compilers that are available for more than than one op-
erating system, the actual platform-specific settings (CONFIG/ARCH/OS branch)
are decoupled from the compiler environment. The widely used gcc for example is
available for various systems so the corresponding meta compiler procedures can
be used on many operating systems without any further modifications. Currently
tmk ’s list of supported platforms include

• SGI IRIX
• Linux

2All of these are included via their command line interface. Currently there is no support for
special features such as project managers or graphical interfaces.

6

• FreeBSD
• SUN Solaris
• Cygnus/RedHat CygWin
• Microsoft Windows 95/98
• Microsoft Windows NT.

The third branch, CONFIG/ARCH/OS UTIL, contains platform-specific utilities,
e.g. for hardware information queries and dependency generation3 .

Maintenance and extension are simplified due to the modular structure of the
configuration, since side effects and code replicas are minimized. So we are pos-
itive that the system can be easily adopted to additional compilers and operating
systems. This is especially true for all UNIX/POSIX based platforms, but should
also extend to others like BeOS and MacOS.

3.2 Multi-Site Support

Another very important topic when designing a make tool for software develop-
ment is finding a comfortable and yet flexible way of integrating e.g. third-party
software packages. At the moment, nearly all configuration utilities such as auto-
conf [4] rely on description files that are usually part of a package release. Often,
this mechanism cannot be used directly for certain reasons. First, and most impor-
tant, software packages used during the development phase may be non-stable pre-
releases or contain special patches which should not be integrated into the standard
installation of a running system. Secondly, software development is a very time-
consuming task so all configuration issues should be reduced to a minimum by
re-using information which remains constant on a certain machine or in a certain
computing environment.

tmk’s solution for this is a ”best of both worlds” approach. Firstly, standard
software installations are supported by gathering information via system-specific
tools. For example on X11-based machines, tmk can obtain information about
the location of various libraries and header files via the imake [2] configuration
tool. This is done by creating a dummy Imakefile which is then converted
to a regular Makefile using xmkmf. Examining this Makefile gives information
about nearly all X11-specific details, such as include paths or the required libraries
to build an executable. Future plans include the integration of package managers
such as RedHat’s rpm or Debian’s dpkg.

Secondly, tmk provides a mechanism for non-standard installations. It is often
the case that developers, although they are working on different projects, wish to
share special software packages. Instead of performing intensive copy-and-paste
actions from other project makefiles, it makes more sense to have a centralized
package mechanism which can be easily accessed and extended. This software
database is integrated in tmk using site-specific configuration files (CONFIG/SITE

branch in Fig. 1).
3In cases where the compiler is not capable of doing this by itself.

7

After the platform-specific configuration is done (Section 3.1), tmk starts search-
ing for a suitable configuration file in the site-config directory4 . The description
files found in this phase are normal Tcl-scripts which add package descriptions
depending on platform-specific settings. As an example, one might add support for
the TIFF library (installed in an uncommon place) by just appending a few lines
like

addAndSet TIFF_INCDIR { /opt/pckg/tiff-v3.5.3_patched/include }
addAndSet TIFF_LIBDIR { /opt/pckg/tiff-v3.5.3_patched/lib }
addAndSet TIFF_LIBS { tiff }

to the actual site-config file. The process of using the TIFF-Library now simpli-
fies to a single module { TIFF } call, regardless of the underlying operating
system, compiler or software installation.

These mechanisms greatly simplify the process of concurrent software devel-
opment because whole projects or even single sub-directories can be shared without
any further modifications. Since system- and software-specific details are encap-
sulated by tmk, all developers work in a virtually identical environment.

4 Examples

This section gives a few short examples that show how tmk can be used. If you
are interested in details, please have a look at the tmk tutorial [6], which contains
many examples with more elaborate explanations.

C++ Compilation and Linking

When using the provided C/C++ modules, compilation and linking is made really
easy. Have a look at the following example:

module cxx
lappend PROGRAMS {test1 prog2}
lappend SYSLIBS {m pthread}
lappend EXCLUDE stupid_test.cc

This very basic example will search for all files with a suffix that indicates C++
code (e.g. .cc, .cpp, .C, .cxx), and generate the following targets (on a UNIX
platform):

• compile .o files from all C++ source files (but not stupid test.o)
• create a library from all object files except test1.o and test2.o
• create the executables test1 and test2 by linking them with the local

library and the specified system libraries

4This search is done by examining files which match a certain pattern, e.g. ${DOMAIN} or
${HOST}-${DOMAIN}.

8

QT Library and ’moc’

There are several modules that can be combined especially well with the C++ mod-
ule, as for example that for Troll Tech’s QT library5 .

module {cxx qt}
lappend PROGRAMS ...
lappend SYSLIBS ...

As you can see, this example does not differ much from the previous one, but
additionally the following things happen:

• tmk looks for all header files (matching a number of predefined and cus-
tomizable suffixes) that contain the keyword Q OBJECT,

• for all matching header files, the QT precompiler ’moc’ is called, and a cor-
responding C++ file basename.moc.C is generated,

• the moc’ed source files are treated as the “normal” source files in the di-
rectory, meaning that they are included in the library, or linked to become
executables, or whatever is appropriate,

• the qt library is added to $SYSLIBS,
• module dependencies are resolved, so that the appropriate support libraries

(e.g. X11 or Win32 libs) are added automatically.

Code Project Trees

In the case of a multi-directory project, tmk employs the concept of project libs in
addition to system libraries. Project libs are specified by their path relative to the
project root. For example, if you are in some subdirectory of project A and want to
add the libraries from project A’s subdirectory a1/a2 and project B’s subdirectory
b1/b2/b3, you can do this as follows:

module {cxx ...}
lappend PROGRAMS ...
lappend SYSLIBS ...
lappend PROJLIBS A/a1/a2 B/b1/b2/b3

In this case tmk will add the appropriate include and libary paths (including the
architecture-dependent subdirectory), and do everything needed for linking the ex-
ecutables with the specified project libs.

Another nice feature is that using the notation of project libs, you can easily
collect parts of your projects from different places. tmk will search for the project
libs in the root of your current project directory as well as in all paths specified
in the $PROJ LOCATIONS variable. Since the actual file name of the library is
never used directly, it is possible for tmk to assign each library a unique name so
that libs will never get mixed up.

5http://www.troll.no

9

5 Conclusions and Future Work

Our experience has shown that software development is simplified a lot through
the use of tmk’s configuration and module concepts. It is both possible to perform
very uncommon tasks in individual parts of a project, and to use the predefined
modules in a very simple way.

This allows novel users to start or join a project without first getting familiar
with complicated make utilities, the local installation, or compiler versions and
flags. Moreover, the developer does not loose the flexibility of an all-purpose au-
tomation tool, and also gains the transparency of a powerful high-level scripting
language. tmk has also proved to serve extremely well for projects that are shared
by collaborating groups of developers and that get installed on several different
platforms.

Future work on tmk includes distributed and parallel processing and a more so-
phisticated support for package versions. One could also think of designing a GUI
on top of tmk in order to simplify tasks like project management and configuration
issues.

We would also like to increase the number of supported platforms and software
packages, and collect additional modules written for tmk. We hope that more
people will find tmk useful and will support its further development.

References

[1] Bob Sidebotham. Software construction with Cons. Perl Journal, 3(1), 1998.

[2] Paul Dubois. Software Portability with Imake. O’Reilly, 1996.

[3] Harald Kirsch. bras — another kind of ’make’.
http://wsd.iitb.fhg.de/˜kir/brashome

[4] David MacKenzie and Ben Elliston. Autoconf. creating automatic
configurations scripts. http://www.gnu.org/software/autoconf.

[5] John Reekie. tclmake – a tcl-only make-like utility.
http://www.eecs.berkeley.edu/˜johnr/code/tclmake

[6] Hartmut Schirmacher. A Tutorial to tmk.
http://www.tmk-site.org/doc/.

[7] Hartmut Schirmacher and Stefan Brabec. tmk Reference Manual.
http://www.tmk-site.org/doc/.

[8] Richard Stallman and Roland McGrath. GNU Make.
http://www.gnu.org/software/make.

10

