
Static testing tools for tcl

Lindsay Marshall

Dept of Computing Science
University of Newcastle upon Tyne

UK NE1 7RU

Abstract

Simple static testing of tcl programs can detect a
large class of common errors. This paper
describes two tools that carry out such tests as
well as providing other services.s

Introduction
The great advantage of an interpreted language like tcl is the freedom it gives you to
create dynamically changing programs with ease. The great disadvantage is that
simple typing errors can lurk in your code for some considerable time until they make
themselves known by causing the program to fail. Tools to help find this class of
problems make the life of a tcl programmer much easier. Unfortunately the dynamic
nature of tcl programs makes full, static checking difficult, and even impossible in
some cases.

However, there are simple, static checks that can pick out several of the commonest
errors and this paper describes two, open source programs that carry these out as well
as performing other useful tasks. I shall first discuss tclCheck, a bracket pairing tester,
and then Frink which tests and formats tcl programs. In conclusion I shall look at
various other checks that other programs could be written to carry out.

The programs are written to be as simple and efficient as possible so that checking
programs can become a routine part of the tcl programmers development cycle. For
instance, the code check−in and program release scripts I use when developing large
tcl programs automatically run both programs over each module before commitment.
This has proved a powerful way of eliminating some (though by no means all!) of the
syntactic errors that I make most frequently.

tclCheck

Originally, tclCheck was itself written in tcl, but, in the days before byte compilation,
it proved to be far too slow to meet my efficiency criteria, and so I rewrote the
program in C. It reads a tcl program and prints out information about any "errors" that
it finds, where an error is defined as the program finding unpaired, unescaped braces,
brackets, parentheses and double quotes. The program is extremely simple - it does
no detailed syntax analysis.

Tcl’s rules for nesting and bracketing are rather context dependent (and at times
confusing!), so tclCheck takes a conservative view of everything. Frequently it will
flag things that may not in fact be errors. This generally occurs inside double quotes,
so that the string ":−(" throws up an error on the (character. To stop the error you
can rewrite the string as ":−\(" which is sometimes a little inconvenient, but in the
long run the parenthesis pairing check usually proves to be useful enough to outweigh
this. Particularly if you use regular expressions frequently. The program does try to
recognise when a parenthesis might be inside in a comment as people do seem to
write things like :

 # 1) blah blah blah

(Though, of course, this behaviour can be turned off if necessary).

tclCheck reads through a tcl program character by character, stacking opening
brackets and unstacking them when the matching closing bracket is found. By default,
it will pop this stack to find a matching bracket using the precedence rule } > [> (.
This means that an erroneous piece of code such as

{ set x [expr {a* (b+c)}}

would generate errors about a missing parenthesis and a missing bracket and match
the pairs of braces. Experience has shown that this behaviour seems to fit the kinds of
errors people make quite well, but of course it can be turned off by the use of a flag.

Two other tests that tclCheck can perform catch annoying errors that are hard to spot
visually. The first is to look for lines that end with a \ followed by blank space before
the end of line. In almost all cases this is an error as the \ was meant as a continuation.
The other test is to look for single double quote characters that would not normally be
recognised as being the start of a string. Thus it would detect the error in the
statement

pcl p1 {$a p2}"

which was intended to be

pcl "p1 {$a p2}"

Sometimes it is rather hard to spot exactly where a bracket is missing even when you
know that one (or more) has been omitted, so tclCheck provides a variety of
"skeleton" printouts which essentially print the input program on the standard output
with only leading white space and the various brackets left in. Formatting options
control the look of this output which can make it much easier to identify the line
where a bracket has been left out by reducing the surrounding noise.

tclCheck is fast and effective. The only possible extension that I might make to it
would be to look for the matching of < and > characters, but it seems that people
rarely make this error on their bind statements and the number of false positives
caused by conditions probably means that the test would be more annoying than
useful.

Pretty Printing

Frink, named for the sculptor Elizabeth Frink (1930 − 1993), was also first written as
a pure tcl program and started out as a pretty printer for tcl. It pretty quickly became
clear that the tcl version was too slow and too complicated so, like tclCheck, it was
rewritten in C - I would have preferred to use C++, but at the time good C++
compilers were not universally available.

Unlike tclCheck, Frink does do some rudimentary parsing of the tcl program. It splits
its input program (which is assumed to be correct tcl) into a stream of structured
tokens which it then parses using a very simple, recursive descent parsing system.
The program knows that every tcl statement has the format command parameters...
and picks out complete statements for formatting. Commands whose parameter
formats are known and which contain code strings are then treated specially, with the
parameters that contain code themselves being parsed into further command
sequences. No attempt is made to try to automatically detect code sequences in
strings. It would certainly be possible to develop heuristics to do this but there would
always be cases where a wrong guess was would be made.

Once a command has been broken down into its component parts, it can of course be
reassembled in a variety of ways. The most obvious is the pretty printing route and
this is Frink’s default behaviour. The user can control all the usual kinds of layout
features such as indentation level and the presence or absence of optional keywords.
Frink knows about some popular extensions such as incr tcl and tclX and can
recognise and format their extended commands (though incr tcl support is not up to
date with the latest version). It also knows about some popular layout styles and can
reproduce these automatically.

There are two difficult problems faced when pretty printing tcl. The first, as with all
code formatters, is the handling of comments. Given a completely unformatted
program with long comments it is almost impossible to "do the right thing".
Particularly hard, given the simple parsing strategy adopted, are end of line comments
and Frink really only handles these well when they obey certain (reasonable) coding
conventions. Single line comments it tends to leave alone where possible - since most
people format their code as they write it and use formatters to tidy up any details this
strategy usually works perfectly well.

The other difficult task is dealing with "incomplete" code fragments, that is, code
created on the fly using variable substitutions etc. that arise when creating bindings or
button command strings and using eval. Frequently these simply cannot be
automatically formatted in any reasonable way and the program provides options
which can turn off the processing of particular commands where this happens most
frequently. (Of course, any code fragment in tcl can be incomplete in this way, but,
luckily, most programmers do not make use of this feature very often.) There is an
unfortunate danger of the formatter altering the input program in bad ways when this
happens but this seems to be unavoidable in a static checking system.

A similar, though less common, problem occurs where tcl programmers (or extension
packages) redefine the commands that Frink "knows" about. In this case it can try to
format as code strings that do not contain code −- once again the solution is to turn

off special processing for these commands.

The astonishing thing is that Frink, simple as it is, manages correctly to format the
vast majority of tcl programs. However, unlike tclCheck it has to be continually
updated as new, code bearing features such as namespaces and interpreters) are added
to the language.

Minimisation, Obfuscation and Optimisation

Once you have broken a program down into its component parts it is rather easy to
consider ways of formatting other than pretty printing. In tcl 7.* days and earlier, the
more characters that your tcl program contained, the slower it ran as they all had to be
reprocessed every time a block of code was executed. It was a simple change to Frink
to make it eliminate all redundant characters from the input program so as to reduce it
to the minimum necessary to run correctly. This involves removing comments, white
space and redundant { } pairs. Speed ups of 33% were reported for some programs
that had been treated in this way. However with the current 8.* interpreters this
feature is now pretty well redundant.

One of the features of interpreted languages that some programmers do not like is that
you have to give potential users your source code which they can then read and
"steal". The real solution is, naturally, to write open source code, but sometimes it
may be useful to make the code harder to read. The minimisation process described
above, whilst removing comments and white space, does not reduce the readability of
programs as much as you might think, so Frink provides an obfuscation feature
which rewrites the code in a "dense" fashion, packing multiple statements on to each
line. This does produce pretty unreadable code, but, unfortunately, anyone with a
copy of Frink can turn this unreadable code back into structured code rather easily, so
the feature is not that useful. More comprehensive obfuscation such as rewriting
variable names etc., is made impossible by the use of dynamic code creation: picking
out names from strings is fraught with difficulty! It would be possible to make
appropriate changes in code that is flagged as "safe" to rewrite, but the effort involved
seems not to be worthwhile.

Frink also featured some experimental code optimisation features, which have now
mostly been removed as the introduction of byte compilation made them redundant.
These optimisations addressed the issue of string comparison which was particularly
slow in tcl 7.* and earlier. Thus the simple statement

if {$a == {}} { }

 could be written

if {[string compare $a {}] == 0} { }

or as

if {[string match {} $a]} { }

both of which were faster. However in all cases involving simple tests it turns out that

the using the switch statement was very much faster than any other method. Thus the
above statement code be written as

switch {} $a { }

or its complement as

switch {} $a {} default { }

(The null string is placed first to eliminate the need for a −− to indicate the end of
options) I tested a simple extension to Frink that could recognise if statements of this
kind and rewrite them as switches. It worked well enough, but tcl 8.* improved the
speed of condition testing sufficiently that the rewriting was redundant (the switch
method is still faster, although now by a much smaller margin). Also, as I tend to
write the switch statements explictly anyway, the extension was of no use to me
personally, so the feature has been removed from the latest release of the program.

Other Checks

Since Frink carries out a simple syntactic analysis of the program it can conveniently
test for several other errors that sometimes occur, such as the wrong number of
parameters to a switch or extra code after the else part of an if statement. These
simple tests prove to be pretty useful, especially where brackets match up but are
nested incorrectly; something that tclCheck cannot detect.

Given the basic parsing structure of Frink it would be perfectly possible to add other
checks to the program, though it might be preferable to make a completely new
program based on it rather than further complicating the existing system. What kinds
of tests would be useful for tcl programmers? This probably varies from programmer
to programmer as we each make different types of error, but here are some
suggestions of what I think could be useful:

• checks on variable usage: used before set, passing value to reference (append,
lappend), global variable name checking

• cross reference listings for variables and procedures

• user declared proc parameter count checking

• regular expression and format string checking.

• binding event type checking − errors here sometimes only show up as a lack
of a feature in the user interface rather than as an actual failure.

• option checking − looking for typos in command options that have known
value sets

• namespace usage checks.

• heuristic checks for common errors

Conclusions

Simple static checking of tcl programs can detect a large number of the common
errors made by programmers. The two tools described above carry out checks
efficiently and effectively and so can improve productivity when writing and testing
programs. However, there are error classes that these tools do not address which
could easily be checked for and it would perhaps be useful to develop a suite of
programs, each of which tackled one specific area. Lint lead a very successful life
amongst C programmers for many years, and there is no reason why such a facility
should not be built for tcl users, provided that a useful set of heuristics can be
developed that can detect typical programmer clumsiness!

