
A new feature of the Tcl core: “Stacked
channels”

Andreas Kupries a.kupries@westend.com
http://www.purl.org/NET/akupries/

Aachen

March 3, 2000

Abstract

This paper is about a new feature which was recently added to the Tcl core
called “stacked channels”, the reasons why it was invented and its possible and
actual applications.

1 Introduction

Whenever an application written in tcl is talking to another application in a continu-
ous way or creating persistent information it uses pipes, sockets, files, . . . , i.e. channels
and the I/O system of the tcl core. This makes that subsystem the second most impor-
tant one of the core right after the pure interpreter together with its concept of variables.

Because of this flaws in it may affect and limit its users profoundly. On the other
hand this also means that any change to it should be considered carefully before its
realization. The rest of this paper describes such a change to the I/O system which was
recently adopted, and the reasons behind it, i.e. the problems it solves. It is structured
like this:

Section 2 describes some of the problems which plagued the I/O system of the core
before version 8.2. This is followed by section 3 giving an overview of the proposed
and adopted solution to this problems. Here we will see examples of applications
and extensions actually using this feature to solve their problems with it too. This is
followed by section 4 which then goes into the technical details of the implementation
of stacked channels. At last we draw some conclusions and take a look into the future
of the I/O system, especially as the stacked channels as they are now by no means solve
all the problems with it.

1



2 Problems of the Tcl I/O system before Tcl 8.2

Suppose

you have an application made up of two parts communicating through a pipe, f.e.
a mathematical engine and its GUI. Now move the engine to a different, possible
more powerful machine.

Is this a problem ? No. We have to change the application to use a socket instead
of a pipe, but only the small part of it which deals with opening the connection
between engine and GUI. Why ? Because both pipe and socket are hidden behind
a single concept, the channel. The places opening it have to change, but the rest
of the application can deal with it unchanged.

Now suppose that the management decides that the communication between the
two parts should be secure too and requests the implementation of some en-
cryption protocol. This is a problem. Every part of the application involved in
communication now has to be rewritten to take care of this new feature. A night-
mare in maintenace just opened up, destroying any modularity the application
might have had in its parts.

Another problem of this is that the code to invoke the encryption is scattered all
over the place.

an application reading and writing configuration files faces the request to com-
press them for writing1. Again all places in the application reading/writing the
configuration have to change to deal with this new requirement.

The general theme behind these two examples is that the have operations trans-
forming streams of bytes in some way and thus similar to channels, but which have to
be implemented as a separate thing despite this and thus forcing changes all over in
applications using them instead of the relatively small number of places opening the
channels used by the majority of the application.

3 Proposed solution

The solution proposed here is to crack open the encapsulation provided by the channel
abstraction in a controlled way, thus giving extensions and possibly even scripts not
only access to the data flowing through a channel but the ability to manipulate it as
well.

The means to that end is the notion of “stacking” channels upon each other. Instead
of only creating new standalone channels allow it that a new channel takes the identity
of an existing channel, and additionally force it to write anything written to it into the
channel it superceded and force it too to read any data it requires to satisfy read requests
from the superceded channel.

Together with the existing ability to enhance the I/O system through new drivers
it is now possible to wrap any transformation we like into a channel and use without

1and of course to decompress them while reading

2



disturbing the parts of any application not dealing with the creation of the channels it
is using.

This means that the problems described in the last section are no such anymore.
Both are solved by

1. writing an extension wrapping the desired transformations (encryption, compres-
sion),

2. creating a channel type using this extension (or actually being a part of the ex-
tension)

3. and stacking a channel of the desired type (encryption, . . . ) over the pipe, socket,
file, . . . the application usually deals with. Only the places opening this channel
have to be modified, but to the rest of the application the channel appears to be
unchanged and is used before.

This technology of stacking channels even opens up new possibilities like

error-correction for noisy channels,

or, related to this, the generation and injection of authenticating hashes,

usage of encodings like Base64 to transfer binary data over not 8bit-clean chan-
nels,

passive taps to log the activity on a channel to

– generate statistics

– or debug some code implementing an internet protocol (SMTP, FTP, etc.
are all human-readable).

Two- or even multiway transfer between channels2

Examples of applications and extensions actually using this feature are:

In the area of security we have TLS[12] by Matt Newman[6]. This extension
implements the SSL protocol using OpenSSL[19] as its engine.

A practical application is its use as part of the TclHttpd[14] so that it is able
to provide the https schema (secure HTTP), a definitive requirement for e-
commerce.

Apart from eCommerce this could be used to create secure virtual private net-
works too, i.e. several tcl applications securely interacting over long distances.

Related to this: Another package which could benefit from this is the Comm[15]
package by John R. LoVerso[10] which implements the send-command of Tk,
but using sockets instead of X properties.

An application of all this might be the secure and trusted access to the Tcl equiv-
alent of the Comprehensive Perl Archive Network.

2Sort of an extended fcopy. This is a new idea coming from Matt Newman[6]

3



Another extension in the security area is TrfCrypt. As it provides only raw
encryption systems and no complete security protocol around them it is more
fitting in case of small-scale usage or more closed environments.

The base framework for TrfCrypt is contained in and provided by Trf[16].
This extension additionally provides converters for several methods of encoding
data (like Base64) and implementations of important authenticating hashes (like
MD5).

An application of these is Tcl MIME[13], a mail handling extension written by
Marshall Rose[9]. It uses the stacking of channels to push and pop the encodings
requested by the various “content-encoding:” headers onto the channel a MIME-
compliant mail is written too.

As Trf also provides a zlib-transformation[20] doing data compression a
completely tcl-based client to CVS3[18] is now feasible too.

The idea described above is not new. The streams abstraction invented by Dennis
Ritchie[5, 1] and used in various Unixes to interconnect the modules handling the var-
ious network protocols[2, 3, 4] does a similar thing as stacked channels, but in kernel
space instead of user space. The differences, which do exist, are something which we
will talk later about, in section 5.

4 Technical details

Having seen the applications of the new feature we can now turn toward its implemen-
tation, i.e. the actual changes which were made to the core.

Let us first have a look at the general state of affairs before version 8.2 of the tcl
core. This is shown in figure 1. A script uses a channel, and the data going through it
is directed through the specific driver into the operating system.

The first attempt at implementing this feature actually had no notion of stacking
channels but tried to modify the buffer management system in the I/O system instead
to insert the necessary hooks for the transformations. This is shown in figure 2.

This approach soon proved to be virtually unmaintainable due to the complexity
of the existing code and was given up in favor of the current implementation which
mainly used the existing venues for extending the I/O system, i.e. channel types with
their custom drivers. This approach delivered 100 percent of the required functionality
even without actually patching the core. This is shown in figure 3.

The problem here? Any new stacked channel gets its own identity and leaves the
original channel accesssible to the user, both at C- and script-level, thus leaving the
door wide open for the accidential creation of an inconsistent state in the transforma-
tion and/or of corrupted data in the original channel. Closing these potential sources of
gross errors requires patching the core as internal data structures4 have to be manipu-
lated. See figure 4.

3The newer versions of CVS use zlib embedded into their remote access protocol to minimize the amount
of data to transfer

4The global list of all channels, maintained accross all interpreters

4



OS

Script

Interpreter

global list of
all channels

File
Socket
Pipe

Channel Driver

Figure 1: I/O system before Tcl 8.2

The changes in detail:

The generic channel structure became a new field “supercedes”. For each chan-
nel it refers to the channel it has taken over. For normal channels this field
contains NULL.

Two new procedures were added to the public C-API allowing the user to

– stack a new channel over an existing one,

– and to remove the channel from the top of a sstack.

Both procedures take care of manipulating the inter- and cross-interpreter data
structures used to manage all channels, and setup and modify the relevant chan-
nel structures themselves. This includes

– the manipulation of the eventsystem related structures (ChannelHandlers,
etc.) for proper integration of the stacked channel into it5 and

– the manipulation of the original channel to switch off all its functional-
ity which could interfere with the transformation, namely buffering, EOL-
translation and UTF-8 encoding.

5 Conclusions & Future directions

With this new feature we now have another method to help us writing modular applica-
tions, helping us in glueing functionality together. It doesn’t solve all of our problem,
though. Things we still have to consider are:

5To preserve working fileevents was an absolute requirement for the patch.

5



OS

Script

Interpreter

Driver

global list of
all channels

Transformation
(f.e. encryption)

Channel

Figure 2: I/O system after 1st attempt to implement the new feature

OS

Script

Interpreter

global list of
all channels

Transformation
(f.e. encryption)

Channel

Channel Driver

Stack
Driver

Figure 3: I/O system with new feature, without patching

The code for the generic part of the I/O system contains three operations which
are mixed together but should really be implementated as separate transforma-
tions, as shown in figure 5.

Doing so is a major effort and although retaining backward compatibility is pos-
sible for the important parts of the I/O system it is not possible for all of them.

It was already said that the approach of directly modifying the buffer manage-
ment to insert the hooks required for this feature was given up due to the com-
plexity of it. It is unfortunate that the Core Team decided to implement the UTF-
8 encoding mechanism exactly so, thus increasing the complexity and lowering
maintainability.

It is even more unfortunate that we now have an inconsistent API for writing to
a channel, as some of the public procedures go through the encoding stage and
others bypass them. No way of unbundling the three internal transformations

6



OS

Script

Interpreter

global list of
all channels

Transformation
(f.e. encryption)

Channel

Channel Driver

Stack
Driver

Figure 4: Current I/O system, with new feature

OS

Script

Interpreter

global list of
all channels

Channel DriverBuffer
EOL UTF-8

EOL UTF-8Buffer

Figure 5: I/O system, internal transformations

will enable us to maintain this “feature” of the API.

One of the differences between stacked channels and the kernel space streams
is that the Tcl I/O system is completely stream oriented whereas streams allows
the handling of message oriented protocols as well, for example UDP or X.25
and all the other lower-level protocols below IP. We can emulate this by pack-
ing and unpacking messages on every level of transformations stacked upon a
channel but this replicates work and wastes resources. It also means that every
transformation has to exist in multiple variants for every message-based protocol
which might be used below it.

Adding message-based interfaces to channels in the future seems to be the way
to avoid this.

Usage of such interfaces is not restriced to UDP. Another example are the proto-
cols used by Palm Pilots to communicate via serial interfaces.

7



6 Acknowledgements

I am indebted to Jacob Levy[8], Jan Nijtmans[7] and Matt Newman[6] for their support
and ideas while this feature was in its proposal and patch phases.

8



References

[1] Dennis Ritchie[5], A Stream Input-Output system,
http://cm.bell-labs.com/cm/cs/who/dmr/st.html,
http://cm.bell-labs.com/cm/cs/who/dmr/st.ps,
The orriginal paper about “streams”.

[2] Programmer’s Guide: STREAMS, UNIX System V Release 4, UNIX Press, ISBN
0-13-02-0660-1

[3] STREAMS Modules and Drivers, UNIX System V Release 4.2, UNIX Press,
ISBN 0-13-066879-6

[4] Stephen Rago, UNIX System V Network Programming, Addison-Wesley, ISBN
0-20-156318-5

[5] Dennis Ritchie, dmr@bell-labs.com
(http://cm.bell-labs.com/cm/cs/who/dmr/)

[6] Matt Newman, matt@sensus.org (http://www.sensus.org)

[7] Jan Nijtmans, j.nijtmans@chello.nl
(http://www.purl.org/net/nijtmans)

[8] Jacob Levy, jyl@best.com

[9] Marshall Rose, mrose@dbc.mtview.ca.us

[10] John R. LoVerso, John@LoVerso.Southborough.MA.US
(http://www.schooner.com/ loverso)

[11] Brent Welch, welch@scriptics.com
(http://www.beedub.com/)

[12] TLS, a binding of SSL/TLS for Tcl, uses OpenSSL[19], see
http://www.sensus.org/tcl, by Matt Newman[6].

[13] Tcl MIME, a MIME-compliant mail handling package, see
http://www.purl.org/NET/akupries/soft/mail/, by Marshall
Rose[9].

[14] TclHttpd, a web server written in Tcl, see
http://www.scriptics.com/products/tclhttpd/, by Brent
Welch[11].

[15] Comm, an implementation of send using sockets, see
http://www.schooner.com/ loverso/tcl-tk/#comm, by John R.
LoVerso[10].

[16] Trf, see http://www.purl.org/NET/akupries/soft/trf/

9



[17] TrfCrypt, see
http://www.purl.org/NET/akupries/soft/trfcrypt/

[18] CVS, a tool for configuration and version management of source code. See
http://www.cyclic.com/cvs/info.html.

[19] OpenSSL, a free implementation of the SSL/TLS security protocol, see
http://www.openssl.org

[20] zlib, a free compression library, see
http://www.cdrom.com/pub/infozip/zlib/

[21] bzip2, a free compression library, see
http://sourceware.cygnus.com/bzip2/index.html

10


